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Abstract

We analyze the impact of high frequency trading in financial markets based on a model

with three types of traders: liquidity traders, market makers, and high frequency traders.

Our four main findings are: i) The price impact of the liquidity trades is higher in the

presence of the high frequency trader and is increasing with the size of the trade. In par-

ticular, we show that the high frequency trader reduces (increases) the prices that liquidity

traders receive when selling (buying) their equity holdings. ii) Although market makers also

lose revenue to the high frequency trader in every trade, they are compensated for these

losses by a higher liquidity premium. iii) High frequency trading increases the volatility

of prices. iv) The volume of trades doubles as the high frequency trader intermediates

all trades between the liquidity traders and market makers. This additional volume is a

consequence of trades which are carefully tailored for surplus extraction and are neither

driven by fundamentals nor is it noise trading.
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1 Introduction

Around 1970, Carver Mead coined the term “Moore’s law” in reference to Moore’s statement

that transistor counts would double every year. There is some debate over whether this “law”

is empirically valid but there is no discussion that the last forty years have seen an explosive

growth in the power and performance of computers. Financial markets have not been immune

to this technological advance, it may even be one of the places where the limits of computing

power are tested every day. This computing power is harnessed to spot trends and exploit profit

opportunities in and across financial markets. Its influence is so large that it has given rise to

a new class of trading strategies called high frequency (HF) trading. The term HF trading is

often used interchangeably with that of algorithmic trading (AT). We prefer to restrict the use

of “HF trading” to refer to a subset of AT trading strategies that are characterized by their

reliance on speed differences relative to other traders to make profits and also by the objective

to hold essentially no asset inventories for more than a very short period of time.

The advent of AT has changed the trading landscape and the impact of their activities is

at the core of regulatory and financial discussions. The explosion in volume of transactions

we have witnessed in the last decade, and speed at which trades are taking place, is highly

suggestive that AT is very much in use, and that these strategies are not being driven out of

the market as a result of losses in their trading activities. Indeed, different sources estimate that

annual profits from AT trading are between $3 and $21 billion (Brogaard [2010] and Kearns

et al. [2010]). These strategies have supporters and detractors: on one side we find trading

houses and hedge funds who vigorously defend their great social value, whilst being elusive

about the profits they make from their use; and on the other hand there are trading houses

that denounce high frequency traders (HFTs) as a threat to the financial system (and their

bottom line). Although AT in general and HF trading in particular have been in the market

supervisors’ spotlight for quite some time, and efforts to understand the consequences of HF

trading have stepped up since the ‘Flash Crash’ in May 6 2010 (SEC [2010], Commission et al.

[2010], and Kirilenko et al. [2010]) there is very little academic work that addresses the role of

these trading strategies. The objective of this paper is to provide a framework with which to
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analyze the issues surrounding HF trading, their widespread use, and their value to different

market participants.

To analyze the impact of HF trading in financial markets we develop a model with three

types of traders: liquidity traders (LTs), market makers (MMs), and HFTs. In this model

LTs experience a liquidity shock and come to the market to unwind their positions which are

temporarily held by the MMs in exchange of a liquidity premium. On the other hand, the HFT

has the ability to process information and execute trades more quickly than anybody else in

the market; an ability that allows her to act as an intermediary and extract part of the trading

surplus from the transactions between LTs and MMs. In addition, if there are no HFTs in the

market, our model reduces to that of Grossman and Miller [1988] which we use as benchmark

to analyze some of the consequences of HF trading.

We highlight our main findings. First, the price impact of the liquidity trades is higher in

the presence of the HFT and is increasing with the size of the trade. In particular, we show

that the HFT reduces (increases) the prices that LTs receive when selling (buying) their equity

holdings. Second, although the MMs also lose revenue to the HFT in every trade, the price they

pay to purchase shares is lower than the price paid in the absence of the HFT, and the price

at which MMs sell is also lower than that received if there were no HFTs extracting trading

surplus. However, they are compensated by a higher liquidity premium. Third, HF trading

increases the volatility of prices. Fourth, we show that the volume of trades doubles because the

HFT act as an intermediary for all trades between the LTs and MMs. The additional volume

is neither driven by fundamentals (only the original trades, without the HFT, are driven by

fundamentals) nor is it noise trading. Far from it, the extra volume is a consequence of trades

which are carefully tailored for surplus extraction.

Two contemporaneous empirical papers lend strong support to the stylized features that our

theoretical model captures as well as the implications concerning the impact that HF trading

has on financial markets. The recent work of Zhang [2010] firmly concludes that HF trading

increases stock price volatility and that this positive correlation between volatility and HF

trading “is stronger for stocks with high institutional holdings, a result consistent with the view

that high-frequency traders often take advantage of large trades by institutional investors”.
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Kirilenko et al. [2010] study the impact of HF trading during the Flash Crash on May 6 2010.

Their findings about the activities of HFTs also provide strong support for the theoretical

description we use to include HFTs as pure surplus extractors in our theoretical model. They

find that HFTs have among all types of traders the highest price impact and that “HFTs are

able to buy right as the prices are about to increase. HFTs then turn around and begin selling

10 to 20 seconds after a price increase.” Moreover, they find that “The Intermediaries sell when

the immediate prices are rising, and buy if the prices 3-9 seconds before were rising. These

regression results suggest that, possibly due to their slower speed or inability to anticipate

possible changes in prices, Intermediaries buy when the prices are already falling and sell when

the prices are already rising.” These findings strongly support our assumption that HFTs (due

to their speed advantage) can for the most part effectively anticipate and react to price changes

as a key part in their strategies for surplus extraction.

Before delving into our analysis of HF trading, we provide a brief overview of HF trading

and HFTs, what HFTs could be doing, and what is it about trading speed that is so profitable

for some and damaging for others, we do this in Section (2). After this quick overview, in

Section (3) we develop our framework and analysis. In Section (4) we use the model to discuss

the main issues raised by the presence of HFTs and in Section (5) we conclude and discuss

some key features about HFTs that require further research (and quality data).

2 Trading Algorithms, High Frequency Traders, and Financial

Markets

2.1 Financial Market Developments

Over the last years all major exchanges have revamped their systems to give way to the new

era of computerized trading. Speed of trading and volume figures speak for themselves. In

the SEC’s report on “Findings regarding the market events of may 6, 2010” (SEC [2010]) we

read that NYSE’s average speed of execution for small, immediately executable orders was

10.1 seconds in January 2005, compared to 0.7 seconds in October 2009. Also, consolidated
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average daily share volume in NYSE-listed stocks was 2.1 billion shares in 2005, compared

to 5.9 billion shares in January through October 2009. Consolidated average daily trades in

NYSE-listed stocks was 2.9 million trades in 2005, compared to 22.1 million trades in January

through October 2009. Consolidated average trade size in NYSE-listed stocks was 724 shares

in 2005, compared to 268 shares in January through October 2009.

Other important metrics that intend to capture market efficiency and information transmis-

sion have also undergone considerable changes as a result of modifications of market rules and

the prominent role that computing has taken in financial markets. For example, Chordia et al.

[2010] focus on comparisons of pre- and post-decimal trading in NYSE-listed stocks (subperi-

ods from 1993-2000 and 2001-2008). Some of their findings are that average effective spreads

decreased significantly (from $0.1022 to $0.0223 cents for small trades (<$10,000) and from

$0.1069 to $ 0.0267 for large trades (>$10,000)), while average depth available at the inside

bid and offer declined significantly (from 11,130 shares to 2,797 shares). From 1993-2000 the

mean trade size is $82,900 and from 2001-2008 $36,400 while the mean number of transactions

is 1,136 and 14,779 respectively.

2.2 What characterizes Algorithmic and HF Trading

We adopt Hendershott et al. [2010]’s definition of AT: “the use of computer algorithms to

automatically make certain trading decisions, submit orders, and manage those orders after

submission”. We distinguish HF trading as a subset of AT. An HF trading strategy is an

algorithmic trading strategy that is based on exploiting greater processing and execution speed

to obtain trading profits while holding essentially no asset inventory over a very short time

span—usually measured in seconds, mostly less than a few minutes, and certainly less than a

day.1 One sometimes finds these strategies described as latency arbitrage. HF traders (HFTs)

are proprietary firms and proprietary trading desks in investment banks, hedge funds, etc, that

based on these strategies have the ability to generate large amounts of trades over short periods

of time, Cvitanić and Kirilenko [2010]. There are other AT strategies that are in use for other
1In their study of the ‘Flash Crash’, Kirilenko et al. [2010] find that, holding prices constant, HFTs reduce

half their net holdings in 115 seconds.
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purposes. For example, there are AT liquidity strategies which strategically post and cancel

orders in the order book to exploit widening spreads, or AT strategies designed to execute

large orders with the smallest price impact. Our analysis focuses exclusively on HF trading

strategies, which we believe are the ones most critics of AT have in mind.

Making the distinction between HF trading and AT is important because it highlights the

substantial difficulty one encounters when measuring the impact that HFTs have on markets

according to metrics such as volume, spreads, and liquidity. For example, estimates of HF trad-

ing volume in equity markets vary widely depending on the year or how they are calculated,

but they are typically between 50% and 77% of total volume, see SEC [2010] and Brogaard

[2010]—although how much is actual HF trading versus generic AT is unclear. Also, Hender-

shott et al. [2010] find that for large-cap stocks AT improves liquidity and narrows effective

spreads. They also find that AT increases realized spreads which indicates that revenue to

liquidity suppliers has increased with AT, but it is difficult to infer how much of these effects

are due to AT that is not HF trading. Similar identification problems are present in another

recent study, Brogaard [2010], which finds that HFTs contribute to price discovery and reduce

volatility. Thus, this identification problem, as well as possible collateral effects on other AT

strategies, have to be taken into account in any regulatory implications one may draw from our

analysis, as we focus exclusively on HF trading.

As per our definition, paramount to the activities of HF traders is the speed at which they

can: access and process market information; generate, route, cancel, and execute orders; and,

position orders at the front of the queue in the trading book so as to avoid having stale quotes

in the market. Their speed or low latency is mainly due to two key ingredients: capacity

(software and hardware), and co-location. Co-location allows HFTs to place their servers in

close physical proximity to the matching engines of the exchanges. Surprisingly, being near the

exchanges can shave the speed of reaction by a sufficient number of fractions of a second to

provide HFTs a valuable edge when trading in the market—to the extent that they are willing

to pay millions of dollars for this service.

Perhaps the most revealing behavior of HFTs is how they make use of cancelations to poke

the market and extract valuable information. For instance, the strategy known as ‘pinging’
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is based on submitting immediate-or-cancel orders which are used by HFTs to search for and

access all types of undisplayed liquidity SEC [2010].2 Another strategy, known as ‘spoofing’,

consists of sending out a large amount of orders over a short period of time before immediately

canceling most of them and only a few are executed. This burst of activity is expected to trigger

other algorithms to join the race and start buying or selling (and slow down information flows

to other market participants).

2.3 How is it that HFTs could be making money?

Here we provide four stylized examples that show how HFTs could be exploiting their speed

advantage by posting, executing, and canceling orders so as to position their orders at front of

the queue and intermediate in market transactions for a negligible period of time. Although the

first three examples outline different strategies used by HFTs, the underlying feature common

to all three is the ability that HFTs have to extract trading surplus.

Example 1. One way in which HFTs can extract surplus is by exploiting their speed to

alter market conditions in a way that encourages buyers to accept a slightly higher price and

sellers a slightly lower one. The idea is relatively simple and works in a setting where liquidity

traders split their trades in small packages and market makers do not have large outstanding

offers in the books. Suppose a trader (LT) needs liquidity and wants to sell a block of shares.

As the first shares come into the system (say at the best buy price of $5.50 per share), the

HFT cancels her outstanding posted buy offers that have not been executed. She then posts

additional sell offers, adding to the increased selling pressure, so as to help clear the remaining

posted buy orders in the book. Once the book is clear, the HFT quickly reposts a significant

number of offers at lower prices (say $5.48) so that she is first in the buying queue. This is

only possible if she can move quickly enough that by the time the market maker (MM) reacts

to the increased selling pressure, new posted offers by the MM sit behind those posted by the

HFT at $5.48 per share. The liquidity trader finds that the market around $5.50 has dried up

and can only sell at $5.48. These shares are bought by the HFT, who is at the front of the
2There are circumstances when orders are placed close to best buy or sell with no intention to trade, this is

known as book layering, and up to 90% of these orders are immediately canceled, see SEC [2010].
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queue. Also, having posted substantial orders at the front of the queue at $5.48 allows the HFT

to be the first to notice when the liquidity pressure eases. At that moment, the HFT cancels

her posted buy offers and starts posting sell offers at slightly higher prices (say $5.49). The

MM sees the selling pressure shift and the price rebound. Although the MM is sorry to see

the lower prices disappear, he is still willing to buy at $5.49, which allows the HFT to sell her

earlier purchases and end up with a zero net position. During this process, the HFT has been

able to make profits on the shares bought at $5.48 and sold at $5.49, while taking a loss on

the shares executed at the beginning, bought at $5.50 and sold at $5.49. An HFT who is fast

enough will have bought many more shares at $5.48 than at $5.50 by selectively canceling and

reposting her offers to make the strategy profitable. As for the other traders: The MM bought

some shares below the initial best buy price so he is satisfied; the other liquidity trader is also

satisfied from having been able to sell his shares even though for some of them he received a

cent less than what the MM paid for them.

Example 2. Assume that the market opens after the release of good news about a com-

pany’s performance. At opening, shares are selling at $5.50 and slow traders (traders who are

not HFT) are posting buy orders. Due to the high latency of the slow traders, HFTs see the

buy orders arriving in the system and decide to purchase as many shares as possible at the

current price. Immediately, HFTs issue low volume immediate-or-cancel sell orders to gauge

how much are slow traders willing to pay for the shares. For example, an immediate-or-cancel

sell order goes out at a price of $6.00 per share and if it does not get filled it is immediately

canceled and a new immediate-or-cancel sell order is sent at $5.99 and so on until it is filled,

say at $5.70. At this point the HFTs unload all shares that were purchased making a profit

and holding no inventories.

Example 3. Similarly, HFTs may take advantage of the so-called flash orders which give

them an informational edge over other traders in the market. For example, a buy order for

1,000 shares at $5.50 is ‘flashed’ to a reduced number of traders some of which are HFTs.

Traders that are flashed the information not only know about such a potential trade before the

vast majority of the market, but they are also capable of acting upon the information before

it reaches the rest of the market. If the HFTs believe or are able to correctly anticipate that
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this buy order is part of a large lot that will trickle through the system in small batches of,

say 1,000 shares at a time, they have time to react and purchase all shares in the market; use

sell-or-cancel orders to find out the upper limit at which the counterparty that initiated the

buy order is willing to pay to liquidate his entire lot of shares; and complete the round trip of

buying and selling whilst making a profit and carrying no inventory, all of this in the intraday

market, and possibly within a couple of minutes.

Example 4. Other trades that could be profitable for HFTs, but do not profit from

extracting surplus, are those that are designed to collect rebates offered by the exchange.

Market centers attract volume by offering a liquidity rebate to MMs that post orders. Rebate

strategies that break even by selling (buying) and then buying (selling) shares at the same price

are profitable because they earn the rebate for providing liquidity. If the rebate is around 0.25

cents per share then a round trip rebate accrues half a cent per share to the HFT that pursues

these type of rebate trading.

We note that although the examples above have been contrived so that the HFTs make

positive profits these strategies are not arbitrages. This is because there are states of the world

where they can also deliver a loss. These strategies are not riskless and the HFTs face different

types of risk, for instance volume and price risk. In all cases the HFT must take a view on

what side of the market she will initially take and how many shares and at what prices she is

willing to buy (sell) before turning around to sell (buy) her holdings with the objective of not

carrying inventories for too long. Here we take the view (supported by the findings in Kirilenko

et al. [2010]) that as a result of their speed and their ability to post and cancel orders, it is

presumed that more often than not the HFT will earn a profit, or break even, and be flat after

a short period of time. It is the value of these trades we want to analyze.

3 The Model

Our analysis sets up a framework in which a stock market has social value because it facilitates

the financing of economic activity, adding value to equity holders by providing a way for them

to convert their equity into cash (and viceversa) quickly and at a reasonable price. This idea is
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captured by the Grossman-Miller (GM) model, Grossman and Miller [1988]. In the GM model,

equity investors (liquidity traders) quickly find counterparties for their trading needs.3 These

counterparties are MMs who are willing to take the other side of investor trades and hold those

assets temporarily–until another investor enters the market to eliminate the temporary order

imbalance. Holding these assets entails price risk, which MMs are willing to bear in exchange

for a small payment. This payment is calculated as the difference between the price at which

the transaction takes place and the expected value of the traded asset. We introduce HFTs

in this model, where an HFT is a trader who, thanks to her rapid information processing and

quick execution ability, can extract part of the trading surplus from the transaction between

equity investors and MMs. However, even though our analysis centers on the effect of HFT’s

surplus extraction due to a temporary trading imbalance, it also applies to a broader set of

circumstances. In particular it applies to a much larger number of market participants, which

includes mutual fund managers, hedge funds, insurance companies and other large investors

and for a broader range of transactions, not only immediate liquidity needs, but also other

trades executed either to build up or unwind an asset position, for hedging, etc.

The setting for our model is a simple world with three dates, t = 1, 2, 3 in which a temporary

order imbalance of size i affects conditions in a stock market with a cash asset (with a return

normalized to zero) and a risky asset. There are two “outside investors”, which we refer to as

liquidity traders (LT1 and LT2). LT1 wants to sell i shares of the risky asset at date 1, while

LT2 wants to buy i shares at date 2 (trade −i shares).4 If both traders met at the same time

the asset price would not be affected by i but, as they do not, the M intermediaries, the MMs,

accept LT1’s order at date 1 and hold that position until LT2 enters the market at date 2.

Date 3 serves as a reference point to determine the expected cash value of the asset, which is

described by the random variable P3. The asset has price risk as public information about P3

enters the market at dates one and two. Thus, MMs face price risk between dates one and two,

and in order to compensate for this risk when holding the assets, market prices will adjust.
3The other interpretation of the model is intended for the futures market. Everything we say for the stock

market is also equally valid for trading in the futures market in exactly the same terms. We refer the interested
reader to the original article for details of how to reinterpret the model.

4We make the assumption that LT1 wants to sell and LT2 wants to buy to streamline the presentation. The
analysis is equally valid if LT1 wants to buy i shares and LT2 wants to sell them.
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All these traders (LT1, LT2, and MMs) are price-taking and risk averse. They have expected

utility from wealth at date 3 so that they choose their asset positions so as to maximize

E [U (W3)], where U (W ) = − exp (−aW ). We assume that market prices at each date, Pt,

t = 1, 2, 3, are normally distributed, and we use the notation θxt (Pt) to describe the demand

for assets by trader x at date t for a given price Pt (θxt > 0 implies holding (long) a positive

number of shares).

3.1 HF trading and the Extraction of Trading Surplus

For simplicity we will assume that there is a single, monopolistic HFT in the market. In fact

there are several HFTs in the market which represent a very small fraction of active traders

(out of the almost 12,000 active traders during the flash crahs, Kirilenko et al. [2010] identify

16 as HFTs). Also, entry is limited by high investment costs (co-location and hardware, but

more importantly, access to algorithms and detailed data) and these act as effective barriers to

entry. Thus, it is reasonable to conclude that HFTs can currently exercise a substantial amount

of monopolistic power.

The HFT exploits her greater speed to extract trading surplus from transactions at each

date. This is modeled in a highly stylized way by allowing the HFT to take over any trader’s

position in two blocks: one block is executed at the market price, Pt, and the other at the

market price plus or minus a haircut, ∆. The profits the HFT can obtain from this ability

depend on market conditions and is illustrated by the following simplified example which is

followed below by the description of the general model.

Suppose that a liquidity trader (LT) wants to sell 1, 000 shares, the expected price of the

asset is $5.50 and there are nine MMs. Suppose further that all traders are risk averse and

they have linear demands for assets given by

θMM (P ) = θLT (P ) = 5000 (5.50− P )

so that they will only buy shares if the price is below $5.50.
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In a trading equilibrium, the holdings of all traders (one LT and nine MMs) have to add

up to the supply of LT (1000 shares) so that

9θMM (P ) + θLT (P ) = 1000

⇒ 9× 5000 (5.50− P ) + 5000 (5.50− P ) = 1000

⇐⇒ P = 5.48 .

At the price of $5.48 per share, each trader (including the LT) will hold 100 shares. This

implies that (the price sensitive) LT who wanted to sell 1,000 shares (at $5.50) ends up selling

900 shares at a price of $5.48.

The HFT can enter the market and make profits by introducing a haircut, say of 1 cent per

share, inducing the LT to sell part of his shares at a price of $5.47 and inducing MMs to buy

part of the package at the slightly higher price of 5.49 (using one of the strategies we discussed

in Section 2.3).

The HFT’s profits are determined by traders’ asset demands. At a price of $5.47, LT will

hold 5000 (5.50− 5.47) = 150 shares, thus selling only 850 shares. At a price of $5.49, MMs will

hold 5000 (5.50− 5.49) = 50 shares each, that is 450 shares. These do not cancel and implies

the HFT would be left holding 400 shares, but the HFT wants to hold zero inventory at the

end of the transaction, so the HFTs strategy is: After offering to buy 850 shares from LT at

5.47, she offers to buy another batch of 50 shares from the LT at $5.48. The LT finds these

trades acceptable and executes them. Having acquired all LT’s shares, the HFT turns around

and first offers to sell 50 shares to each of the MMs at $5.49. Then, she offers to sell another

50 shares at $5.48. Again, this combination of offers is acceptable to the MMs and they agree

to execute them. The final result is that the HFT has made 2 cents on each of 450 shares sold

at $5.49 (and bought at $5.47) and another cent on 400 shares bought at $5.47 and sold at

$5.48 for a total of 13 dollars. Furthermore, she ends up holding no inventory. The market has

seen a doubling of the trading volume, plus some transactions taking place at prices above and

below the “market price” of the asset.
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This example represents what happens in the extended general model from which we can

derive equilibrium prices, haircuts, volumes and the effect of the HFT on the number of market

makers in the economy. Although the example (and the model) is highly stylized—it exagger-

ates the profits that an HFT could extract from the transaction, and involves knowledge that

is not directly available to any trader—it does capture the advantage gained by HFTs through

their speed when it comes to extracting information from the order flow and using their exe-

cution speed to cancel and advantageously repost trades in the order book, as was discussed

above.

3.2 The general model: Trading at t = 2

To solve the general model we construct each trader’s problem by backward induction. The

second liquidity trader, LT2, enters at t = 2 and wants to buy i shares. He knows that he

will not be able to acquire all the shares he demands at the “market price” (i+ θLT2
2 (P2)) but

will have to pay the haircut, ∆LT2
2 for some trades, where ∆x

t denotes the haircut applied to

trader x at trading date t–this notation allows us to maintain a generic analysis and postpone

for later a discussion of how the HFT may (or may not) discriminate between different traders

and trading dates. We assume traders accept this haircut as part of the cost of doing business.5

Then, let i+ θ̃LT2
2

(
P2 + ∆LT2

2

)
denote the number of shares he acquires at the (higher) price,

P2 + ∆LT2
2 , so that at the market price he acquires θLT2

2 (P2)− θ̃LT2
2

(
P2 + ∆LT2

2

)
.

Also, given all current information, the date 3 value of the asset P3 is distributed normally

with mean µ and variance σ2. Let E [X|Ft] denote the expectation of X conditional on public

information at date t. Then, given an initial wealth of WLT2
2 , LT2’s final wealth will be

WLT2
3 = WLT2

2 + θLT2
2 (P2)P3 −

(
θLT2

2 (P2) + i
)
P2 −

(
θ̃LT2

2

(
P2 + ∆LT2

2

)
+ i
)

∆LT2
2 ,

5It is possible to introduce a strategic element whereby the trader alters his bidding behavior in anticipation
of the HFT. This can greatly complicate the model but will only affect how much of the trading surplus is
extracted by the HFT, without any qualitative changes in the results.
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which, if we drop the superscripts and the functional dependence of asset holding on prices, is

W3 = W2 + θ2P3 − (θ2 + i)P2 −
(
θ̃2 + i

)
∆2.

Substituting for wealth in the utility function, we obtain:

E [U (W3) |F2] = − exp

(
−a
(
θ2 [µ− P2]− iP2 −W2 −

(
θ̃2 + i

)
∆2

)
+

1

2
a2σ2 (θ2)2

)
.

Trader LT2’s final asset demand, θLT2
2 , is such that it maximizes this expression. Hence,

θLT2
2 (P2) =

µ− P2

aσ2
. (1)

Similarly, LT1’s and MMs’ asset demands at t = 2 can be computed and we obtain

θLT1
2 (P2) = θMM

2 (P2) =
µ− P2

aσ2
. (2)

Market clearing requires that changes in asset holdings equal to zero:

(
i+ θLT2

2

)
+
(
θLT1

2 − θLT1
1

)
+M

(
θMM

2 − θMM
1

)
= 0.

Using the date 1 market clearing condition
(
i− θLT1

1

)
−MθMM

1 = 0 implies that

θLT2
2 + θLT1

2 +MθMM
2 = 0,

so that the equilibrium price is P2 = µ , and the optimal asset positions at the end of period 2

are θLT2
2 = θLT1

2 = θMM
2 = 0. The HFT, on the other hand, will extract trading surplus from

the assets transacted equal to6

∣∣∣θ̃LT2
2

(
P2 + ∆LT2

2

)
+ i
∣∣∣∆LT2

2 +
∣∣∣θ̃LT1

2

(
P2 −∆LT1

2

)
− θLT1

1

∣∣∣∆LT1
2 +M

∣∣∣θ̃MM
2

(
P2 −∆MM

2

)
− θMM

1

∣∣∣∆MM
2 .

6We are assuming that the market makers and LT1 are net sellers of the asset. This is confirmed as in
equilibrium MMs will be net buyers in the first period and have zero net final holdings (and θLT1

2 − θLT1
1 has

the same sign as MMs’ changes in asset holdings at date two).
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3.3 The general model: Trading at t = 1

Traders at date t = 1 anticipate what will happen at t = 2. They also know that there will be

public information revealed prior to date two trading so that P2 is normally distributed with

mean µ and variance σ2 (we keep a constant variance solely to reduce notational clutter).

Traders’ future wealth can be written as

WLT1
3 = WLT1

0 + θLT1
2 P3 +

(
θLT1

1 − θLT1
2

)
P2 −

(
θLT1

1 − θ̃LT1
2

)
∆LT1

2 − θLT1
1 P1 +

(
i− θ̃LT1

1

)
∆LT1

1 ,

WMM
3 = WMM

0 + θMM
2 P3 +

(
θMM

1 − θMM
2

)
P2 −

(
θMM

1 − θ̃MM
2

)
∆MM

2 − θMM
1 P1 − θ̃MM

1 ∆MM
1 .(3)

Using E [P2|F1] = E [E [P3|F2] |F1] = µ, simplifies the expression for traders’ wealth, and it is

straightforward to derive optimal demands:

θLT1
1 =

1

aσ2

(
µ− P1 −∆LT1

2

)
, (4)

θMM
1 =

1

aσ2

(
µ− P1 −∆MM

2

)
. (5)

Notice that traders anticipate that their current asset demand (and hence positions at the end

of trading at t = 1) will affect future trading and hence the haircuts they will have to pay. The

market clearing condition is now

−i+ θLT1
1 +MθMM

1 = 0 .

From this we obtain the market clearing price:

P1 = µ− ∆LT1
2 +M∆MM

2 + iaσ2

M + 1
, (6)

and traders’ asset demand:

θLT1
1 =

i

M + 1
+

1

aσ2

M

M + 1

(
∆MM

2 −∆LT1
2

)
, (7)

θMM
1 =

i

M + 1
− 1

aσ2

1

M + 1

(
∆MM

2 −∆LT1
2

)
. (8)
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Again, the HFT is able to extract trading surplus and generate profits of

∣∣∣i− θ̃LT1
1

(
P1 −∆LT1

1

)∣∣∣∆LT1
1 +M

∣∣∣θ̃MM
2

(
P1 + ∆MM

1

)∣∣∣∆MM
1 ,

where

i− θ̃LT1
1

(
P1 −∆LT1

1

)
=

M

M + 1
i− M

M + 1

∆MM
2 −∆LT1

2

aσ2
+

∆LT1
1

aσ2
.

In summary, from the above analysis we extract the following conclusions:

Theorem 3.1. For a given order imbalance of magnitude i:

1. Market clearing prices are

P1 = µ− ∆LT1
2 +M∆MM

2 + iaσ2

M + 1
, P2 = µ .

2. Asset trading is:
Price LT1 LT2 MM (total)

P1 − ∆LT1
1 − M

M+1

(
i− ∆MM

2 −∆LT1
2

aσ2

)
+

∆LT1
1
aσ2

P1 −∆LT1
1
aσ2 M

∆MM
1
aσ2

P1 + ∆MM
1

M
M+1

(
i− ∆MM

2 −∆LT1
2

aσ2

)
−M

∆MM
1
aσ2

P2 − ∆ i− ∆LT2
2
aσ2

P2 -∆LT1
2
aσ2

∆LT2
2
aσ2 −M ∆MM

2
aσ2

P2 + ∆LT1
2 − 1

M+1

(
i+M

∆MM
2 −∆LT1

2
aσ2

)
+∆LT1

2
aσ2

P2 + ∆MM
2 − M

M+1

(
i− ∆MM

2 −∆LT1
2

aσ2

)
+M ∆MM

2
aσ2

The HFT acts as counterparty to all these trades.

Thus, the HFT affects the market clearing price. Traders, anticipating the haircuts imposed

by the HFT, amplify the selling pressure of the liquidity trader, driving the market clearing

price in the first period down further than it would have been without HF trading.

Also, the presence of the HFT introduces additional prices at which transaction takes place.

These price movements around the market clearing price can be interpreted as additional mi-

crostructure volatility. Furthermore, it can be seen from the table that most of the volume

takes place around the market clearing price, and very little at the market clearing price, which
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may lead to erroneous inference about the “true” market price of the asset at each date. In

addition, we find that

Corollary 3.2. The number of assets that change hands is twice what it would have been

without the HFT.

And,

Corollary 3.3. If there is a rebate of c cents per share, the HFT get half of all rebates, and

the M market makers split a quarter of all rebates between them.

3.4 Optimal Haircuts

The HFT, as a monopolist, realizes that there is a trade-off between a larger haircut, and a

smaller number of assets traded using that haircut. Thus, she will adjust her behavior by

setting haircuts that maximize the profits of her trading activity.

So far we have used notation that allows the HFT to distinguish between different traders

and different periods of time. Of course, this is a highly stylized interpretation of what might

be going on in markets, and the amount of information the HFT can extract from the order

flow. Nevertheless, we do not believe that the order flow allows HFTs to condition on such

fine distinctions between traders and trading times. We do, however, believe that HFTs can

extract sufficient information to distinguish a large trade coming in (the initial trades by LT1

and LT2) from regular (and smaller) trades from other market participants (MMs and, at t = 2,

LT1). Thus, we will focus our analysis on the case where the HFT discriminates according to

relative size of orders and sets one haircut for large trades ∆L, and one for small trades ∆S .

The haircut for the large trades is

∆L = ∆LT1
1 = ∆LT2

2 ,

and for the small trades:

∆S = ∆MM
1 = ∆MM

2 = ∆LT1
2 .
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In the Appendix we discuss another case (where the HFTs make no distinctions and apply the

same haircut to all trades).

Given these assumptions on the HFTs informational advantages, the HFTs problem is to

maximize profits, which from Theorem 3.1 are:

∆L

(
M

M + 1
i− ∆L

aσ2

)
+ ∆S

(
M

M + 1
i−M ∆S

aσ2

)
+ ∆L

(
i− ∆L

aσ2

)
+ ∆S

(
i− (M + 1) ∆S

aσ2

)
.

Lemma 3.4. The optimal haircuts are

∆S =
1

2

1

(M + 1)
iaσ2 ,

∆L =
1

4

2M + 1

M + 1
iaσ2 = ∆S

(
M +

1

2

)
.

This result backs the intuition that the haircut imposed on large trades is bigger than

that applied to small trades, and the increase in haircut for large trades is proportional to the

(average) number of other, non-liquidity seeking, market participants.

Moreover, we see that with more MMs present in the market, the HFT increases the haircut

imposed on the LT1 in date 1 and on LT2 in date 2 (∆L → 1/2 and ∆S → 0 as M → ∞).

Figure 1 below shows that the haircut for the large (small) trades is increasing (decreasing) in

M .

Interestingly, the initial holdings of LT1 are the same as without a HFT:

θLT1
1 =

i

M + 1
.

Figure 2 shows the optimal asset holdings, θt and θ̃t, for the liquidity traders and MMs.
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Figure 1: Optimal Haircuts for large and small trades
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Figure 2: Optimal asset holdings when the HFT sets a haircut for large trades and another
haircut for small trades.
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4 Measuring the impact of HFTs on financial markets

To the best of our knowledge there are only two academic articles that have measured the

impact of AT in the financial markets.7 As discussed in the introduction Hendershott et al.

[2010] find that AT improves liquidity and narrows effective spreads and Brogaard [2010] finds

that HFTs contribute to price discovery and reduce volatility. Although the study of Brogaard

[2010] has data of what he labels as HFTs, his data set cannot differentiate how much of the

activity of the 26 firms in his study is AT and how much is HF trading; the same applies to

the results of Hendershott et al. [2010].

4.1 Basic findings

In the absence of ultra-high-frequency data that provides details of HFTs trades, postings,

cancelations, flash-trades, etc, the second best is to use our model to show how the presence

of HFTs affects different financial metrics such as: volume, liquidity, price impact, and price

volatility. We summarize four basic findings for the particular case analyzed above: the HFT

sets two types of haircuts depending on whether trades are large or small (we discuss the

implications of the case where the HFT applies a unique haircut to all trades she intermediates

in the Appendix).

First, we show that the volume of trades doubles because the HFT intermediates all trades

between the LTs and MMs. The additional volume is neither driven by fundamentals (only

the original trades, without the HFT, are driven by fundamentals) nor is it noise trading. Far

from it, the extra volume is a consequence of trades which are carefully tailored for surplus

extraction. Second, the price impact of liquidity trades is higher in the presence of the HFT

and is increasing with the size of the trade. In particular, we have seen that the HFT depresses

the average prices the LT1 receives in dates 1 and 2, and that the increase in the liquidity

premium and the haircut is proportional to the size of the trade. Interestingly, the equilibrium

quantities that the LT1 sells in date 1 is not affected by the presence of the HFT because the
7In Section 2 we discussed the work of Kirilenko et al. [2010] which focuses on the Flash Crash and employs

three days of data.
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HFT intermediates every trade in order to ensure it does not end up with a non-zero stock of

assets. Third, although the MMs also pay a haircut in each transaction, the average price they

pay to purchase shares at date 1 is lower than the price paid in the absence of the HFT, and

the average price at which MMs sell at date 2 is also lower than that received if there were no

HFTs extracting trading surplus. The overall effect of lower buy prices and lower sell prices for

MMs is that expected returns from holding inventories from date 1 to 2 is higher when a HFT

extracts surplus on both rounds of trades. However, the higher return does not imply greater

expected profits for MMs. Fourth, HF trading increases the volatility of prices.

4.2 Number of Market Makers

Our model allows us to derive the impact of HFT’s surplus extraction activities on the number

of MMs, and hence on the “true” supply of liquidity in the market. We proceed as in GM and

assume that the cost of entry for the MM is c. This cost is sunk before knowing the liquidity

shock i which we assume to be normally distributed and independent of the other shocks affect-

ing prices. At time t = 0 the expected utility of an individual MM is E
[
U
(
WMM

3 − c
)∣∣F0

]
,

where WMM
3 is given by (3). Free entry of MM will occur until

E
[
U
(
WMM

3 − c
)∣∣F0

]
= E

[
U
(
WMM

0

)∣∣F0

]
, (9)

and recall that θMM
2 = 0. The expected value and variance of wealth in period three are

E [W3| F1] = WMM
0 − c+ aσ2

(
θMM

1

)2 − θM1 ∆MM
1 +

1

aσ2

((
∆MM

2

)2
+
(
∆MM

1

)2)
and

Var
[
WM

3

∣∣F1

]
= σ2

(
θMM

1

)2
. (10)

Hence the entry condition (9) becomes
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eacE
[
e
− 1

2
a2σ2(θMM

1 )
2
+aθM1 ∆MM

1 − 1
σ2

(
(∆MM

2 )
2
+(∆MM

1 )
2
)∣∣∣∣F1

]
= 1 . (11)

In Equation (11) we can see the effect of the HFT. First, we can observe that the risk

assumed by the MM depends on his final holdings at date 1 (θMM
1 ). The HFT’s desire to hold

zero assets at the end of each period implies that it will eventually unload all assets and (in

our model) leave the MM with the same asset holdings as if the HFT had not been there.

Then, overall, the risk assumed by the MM will be the same. On the other hand, the HFT

distorts prices. In Equation (11) we can see that the MM makes some extra profit as the

liquidity premium, the difference between expected value and market clearing price, increases

(by aθM1 ∆MM
1 ). But the MM also loses revenue, twice: one from each of the haircuts at dates

t = 1 and t = 2 (− 1
σ2

((
∆MM

2

)2
+
(
∆MM

1

)2)).
Using (5) we can express the optimal haircut for small trades as ∆S = θMM

1
1
2aσ

2. Substi-

tuting ∆MM
1 = ∆MM

2 = ∆S in (11) the entry condition becomes

eacE
[
e−

1
2
a2σ2(θMM

1 )
2∣∣∣F1

]
= 1 ,

which indicates that the gain from the lower price at date 1 exactly offsets the haircuts paid

to the HFT in the round trade (buy from LT1 and sell to LT2). And, the number of MMs

will be the same with or without HFT. The exact canceling of the two effects occurs because

of the particular information assumptions we have made which allows the HFT to distinguish

only large from small trades. In the Appendix we discuss the case where the HFT does not

distinguish trades and charges the same haircut to all participants. In that case, the number

of MMs increases, as the liquidity premium effect is greater than the haircuts.

4.3 Liquidity

Effective liquidity for a liquidity trader is measured by the market impact cost of his trades.

This is usually hard to determine as the identity of traders is not available for empirical analysis,
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so that most studies focus on measuring liquidity in two ways. One measure of liquidity is how

much of the quantity i the price sensitive liquidity trader (LT1) is willing to sell in period 1

at the market clearing price, in reaction to the price impact of his trade. According to this

‘quantity metric’ liquid markets would be those where LT1 carries the smallest holdings over

to the next period (that is θT1
1 is smallest —recall that LT1 sells

(
i− θT1

1

)
in period 1). In the

particular case analyzed here, where the HFT sets a haircut for small trades and a haircut for

large trades, the LT1 carries over an amount θT1
1 = i/(M + 1) which is the same as what LT1

carries over if there were no HFT, so that the presence of the HFT would not alter liquidity at

all.

The other measure of liquidity is to focus on price impact. As we have seen above, our

analysis indicates that price impact might be a better metric. This is because although LT1

sells the same amount in period 1 with and without an HFT, the amount of cash he obtains

(and hence the liquidity he attains from the sale) is much lower due to the presence of the

HFT—both because of the direct loss from the haircuts, but also the additional losses from

lower market clearing prices. Thus, it is liquidity traders, and not MMs (whose expected utility

and numbers stay the same), the ones who take the brunt of the presence of HFTs.

Using our model, we can calculate the effect of HFTs on the prices and returns faced by all

traders, and compare them to those obtained in the absence of a HFT.

When there is no HFT the market clearing price (for buyers and sellers) are:

P∆=0
1 = µ− iaσ2

M + 1
, P∆=0

2 = µ .

This implies that MMs receive a liquidity premium at date t = 1 of iaσ2

M+1 , and obtain an

expected return of

E
[
r∆=0

∣∣F1

]
=

iaσ2

M + 1

1

P∆=0
1

. (12)
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On the other hand, when there is an HFT, buyers and sellers face different prices. The

MM pays a haircut to the HFT in date 1 (when he buys θ̃M1 at P1 + ∆MM
1 per share, and then

θMM
1 − θ̃MM

1 at P1 per share) so that the average price is

P̄M1 = P1 +
θ̃M1
θM1

∆M
1 = µ− iaσ2

M + 1
− 1

4

iaσ2

M + 1

= P∆=0
1 − 1

4

iaσ2

M + 1
. (13)

From which we see that he obtains a 25% higher liquidity premium (after including the haircut

paid to the HFT). Similarly, at date 2

P̄M2 = µ−∆M
2 +

θ̃
M
2

θM1
∆M

2 = P∆=0
2 − 1

4

iaσ2

M + 1
, (14)

so that he ends up selling back at a lower price (relative to the case without HFT), and thereby

losing the initial extra liquidity premium garnered from the first transaction. Note that if we

compute the expected excess return obtained by the MM: r =
(
P̄M2 /P̄M1

)
− 1 we have

E1[r] =
iaσ2

M + 1

1

P̄M1
> E1

[
r∆=0

]
.

That is, the expected returns in the presence of HFT are higher than in the absence of HFT.

As mentioned above, this higher return is purely an artifact of the lowering of both buy and

sell prices—a similar (though reversed) effect would appear if the initial liquidity imbalance

had a different sign (that is, if i < 0).

As for liquidity traders, the HFT extracts surplus from LT1 in date 1 (by first buying

i− θ̃LT1
1 at P1 −∆LT1

1 and then θ̃LT1
1 − θLT1

1 at P1). The the average price received by T1 at

date 1 (Figure 3) is

P̄ T1
1 = P1 −

i− θ̃T1
1

i− θT1
1

∆T1
1 . (15)
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Figure 3: Average price for LT1 in period 1
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At date 2, after the haircut the average price he sells his remaining assets is:

P̄ T1
2 = µ−∆T1

2 +
θ̃
T1
2

θT1
1

∆T1
2 = P∆=0

2 − 1

4

iaσ2

M + 1
. (16)

From Equation (16) we can see that the liquidity premium increases in proportion to the

size of the trade. This implies that LT1 receives less money for liquidating his position at both

dates (relative to the case without HFTs) as can be seen in Figure 3. Similarly, the average

price paid by LT2 in period 2 is

P̄ T2
2 = µ−∆T2

2 +
θ̃T2

2

i
∆T2

2 . (17)

So that LT2 also suffers as she pays more to acquire her position than when there is no

HFT. Note that LT1’s asset demand at date 1 is distorted by the presence of the HFT, as he

anticipates that he will pay a (lower) haircut when selling at date 2.
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Figure 4: Average price for LT1 (sells) and LT2 (buys) in period 2
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We see that the liquidity traders, LT1 and LT2, bear the brunt of the haircut imposed by

the monopolist HFT. Although MMs suffer the loss of consumer (date 1) and supplier (date

2) surpluses, the liquidity premium received by the MMs for shares at date 1 is greater (the

equilibrium price is lower) than in the absence of the HFT, and the net effect on his expected

wealth is zero.
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4.4 Price volatility

When there is no HFT intermediating transactions between LTs and MMs there is one trans-

action price at date 1, P∆=0
1 , and another transaction price at date 2, µ. However, when a

monopolistic HFT intermediates all transactions the tape will record four prices in date 1,{
P1 −∆T1

1 , P1, P1 + ∆M
1 , P1

}
, and four (five or six if ∆MM

2 6= ∆LT1
2 ) in date 2,{

µ−∆MM
2 , µ, µ+ ∆T2

2 , µ
}
. Therefore, it is inevitable to observe price volatility within dates

1 and 2 which is solely caused by the HFT’s presence. Figure 5 shows the volatility of prices

in dates 1 and 2 that result from the HFT intermediating all trades.8 Furthermore, Figure

6 depict the standard deviation of prices at both dates. We see that price volatility is much

higher when an HFT operates in the markets.

Note however that in our model this increased volatility does not generate additional risk

for traders. Traders, in their evaluation of price risk evaluation in their objective functions,

recognize that the microstructure noise generated by the HFT translates into a deterministic

effect on their execution costs while leaving unaffected their final holdings.9

5 Conclusions

We have studied the impact of a monopolistic HFT that extracts trading surplus in transactions

between liquidity traders and market makers. Clearly, the HFT comes out making profits. As

a monopolist, she would enter the market only if these profits exceed the necessary entry costs.

Introducing competition between HFTs would reduce these profits until HFT profits just cover

investment costs for marginal HFTs. Thus the social value of HFT profits revolves around the
8To calculate the mean and variance of prices we also use the price at time t = 0 and assume it is the

fundamental value µ, thus the mean and variance of the price in date 1 are

P̄1 =
µ+ 4P1 +

(
∆M

1 − ∆T1
1

)
5

and V [P1] =
1

5

{(
µ− P̄1

)2
+

(
P1 − ∆T1

1 − P̄1

)2

+ 2
(
P1 − P̄1

)2
+

(
P1 + ∆M

1 − P̄1

)2
}
.

Similarly, to calculate the mean and variance of prices with date 2 we assume that the first observation is µ.
9This changes if we allow for the HFT to (randomly) miss the opportunity to intermediate some trades

between LT and MMs. While adding such a feature will make the model more realistic, it complicates the
analysis substantially without much additional insight.
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Figure 5: Volatility of prices in dates 1 and 2 induced by HF trading
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issue of whether the existence of HFTs, and hence their investments, is valuable for the market

as a whole.

As we have shown, the presence of HFTs doubles trading volume, increases the price impact

of liquidity trades (in proportion to the size of the trade), has no effect on the number of traders

(although this effect depends on the way HFTs vary their haircuts across trades), and increases

price volatility. Thus, the presence of HFTs distorts market conditions, not through the amount

of shares traded, but through prices. By exacerbating price impact, the HFT induces additional

market impact costs on participants, especially the liquidity trader. This cost is proportional

to the size of the trade which implies that large liquidity traders, such as institutional investors

trading to change the composition of a portfolio, are the most affected by the presence of HFTs–

an effect that is consistent with Zhang [2010]’s findings. In the particular case we have analyzed,

it is the liquidity trader that bears all the costs from the presence of the HFT. Market makers

find themselves unaffected because the revenue they lose to the HFT is compensated by a higher

liquidity premium. Overall, the value of the stock market as a forum for providing a way for
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Figure 6: Standard deviation of prices in dates 1 and 2 with and without HF trading
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With HFT
No HFT

investors to convert their equity into cash (and viceversa) quickly and at a reasonable price

falls because of the adverse effect the HFT has on prices. An aspect we have left unmodeled is

the time to execution faced by liquidity traders. Clearly, if the HFT is to intermediate between

liquidity trader and market makers, it must act quicker and hence execution time for liquidity

traders must be lower. Whether the additional speed compensates for the additional trading

costs is something that requires better data, but also it is something that traders are facing

little choice on.

An issue that arises from our analysis is the question of how to measure (socially valuable)

liquidity, when the analyst has no access to the identity of traders and hence cannot determine

directly the market impact costs of trades. Clearly, just adding up the number of trades in the

presence of rent-seeking hyperfast algorithms whose asset positions are essentially zero most of

the time seems like a poor measure of the ability of the market to provide prompt and fair value

to investors. Also, HFTs who generate additional microstructure noise at smaller intervals and

accelerate market transactions raises several questions regarding how to measure price impact,
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whether we should adjust current measures to account for the increase in the speed of execution,

and whether these measures adequately capture an investor’s cost of executing a trade.

Finally, although in our knife-edge case HFTs had no effect on market makers. In the

Appendix we consider an alternative parameterization where HFTs charge the same haircut

per trade, and the effect is to increase the number of traders. This suggests that the overall

effect on the “true liquidity providers” in not at all clear, and we need good empirical work to

(a) determine the speed-cost effect on outside investors and liquidity traders, (b) determine if

HFTs are raising the cost of business for market makers, and (c) if they do, whether the liquidity

they provide is a good substitute for the one that is being driven out. HFTs clearly generate

costs, but they also generate benefits, and the net effect requires more empirical analysis.
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A Appendix

Above we argued that the HFT can discriminate across order size when trades come to the

market which enables her to apply haircuts for large and small trades. If the HFT is not able to

discriminate by size or type of trader she can still exercise her monopoly power by applying one

haircut to all trades she intermediates. Hence we can repeat the analysis above while setting

the following haircuts:

∆ = ∆T1
1 = ∆T1

2 = ∆MM
1 = ∆MM

2 = ∆T2
2 .

Then, the optimal delta set my the HFT is:

∆ = iaσ2 (2M + 1)

(M + 1) (3 + 2M)
. (18)

As in the case with two haircuts discussed in the body of the paper, LT1’s optimal holding is

θT1
1 = i/(M + 1), but as we show below, the equilibrium number of MMs in this case is higher

than without HFT.

Other results are similar to those discussed above: First, the volatility of realized transaction

prices increases. Second, the price impact of the liquidity trades in both periods is substantial:

equilibrium sell (buy) prices are lower (higher) than the competitive price in the absence of

the HFT. Third, the expected returns that the MM face from buying in period 1 and selling

in period 2 increase (at the expense of traders), and the equilibrium number of MMs present

in the market increases when compared to the number of MMs that are present in a market

without a HFT. Fourth, the total volume of trades doubles relative to the number of trades

observed in the absence of the HFT.

In the interest of space we only discuss the equilibrium number of MMs. We proceed as

above where the entry condition (9) becomes

eacE
[
e−

1
2
a2σ2( i

M+1)
2
β(M)

]
= 1 where β(M) =

12M2 + 12M + 7

(3 + 2M)2 . (19)
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By inspecting (19) we know that the number of MMs with and without an HFT will be the

same only when β(M) = 1 and this occurs for M = 1/2. When M > 1/2 we have more MMs

in the presence of HFT. If we denote the number of MMs by M and the number of MMs in

the absence of HFT by M∆=0 we can show that

M∆ =
√
β (M) (M∆=0 + 1)− 1 ,

hence we have that M > M∆=0. (The function β(M) is increasing in M and we are interested

in values for M > 1).
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