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Abstract 

We study the empirical determinants of collateral requirements in the cleared credit de­
fault swap (CDS) market: how margins depend on portfolio risks and market conditions, and 

what the implications are for theoretical models of collateral equilibrium. We construct a novel 
data set containing CDS portfolios and margins posted by all participants to the main CDS 

clearinghouse, ICE Clear Credit, covering 60% of the U.S. market. We provide direct empiri­
cal evidence that margins are much more conservatively set than what a Value-at-Risk (VaR) 

rule would imply, and are unequally implemented across participants. We show that more ex­
treme tail risk measures have a higher explanatory power for observed collateral requirements 

than VaR, consistent with endogenous collateral theories such as Fostel and Geanakoplos (2015) 

where extreme events dominate in determining collateral. The dependence of collateral require­
ments on extreme tail risks induces potential nonlinearities in margin spirals, dampening small 
shocks and amplifying large ones. We also confirm empirically and quantify the main channel 
through which collateral-feedback effects operate in many theoretical models of equilibriums 

with financial frictions, such as Brunnermeier and Pedersen (2009), highlighting the prominent 

role of aggregate volatility and funding costs. 
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1 Introduction 

Financial markets were at the center of the Great Recession. The interaction between volatil­
ity, leverage, and collateralization served to amplify fundamental shocks, and contributed to the 

creation of self-reinforcing death spirals experienced by major financial institutions. 
Largely in response to the crisis, a vast literature has analyzed the role of the collateral channel 

in amplifying financial shocks. The typical mechanism works as follows: after a fundamental 
shock, an increase in required collateral (due to the increased risks or to the losses incurred by 

market participants) may force liquidation and deleveraging, and generate additional downward 

price pressure, thus producing a margin spiral widely studied in the theoretical literature (as an 

example, see Geanakoplos (2010)). 
At the core of models for the collateral feedback channel is the collateral rule, that determines 

how margins are set and how they respond to changes in individual portfolio risks as well as ag­
gregate risks. The literature has employed a variety of models of margining, from an exogenously 

specified function like VaR (e.g., Brunnermeier and Pedersen (2009)) to an endogenous collateral 
requirement as in Geanakoplos (1997) and Fostel and Geanakoplos (2015), who study how equilib­
rium collateral levels depend on market conditions and portfolio risks. 

Despite the centrality of the margining rule for theoretical models of financial crises – and 

despite the fact that different collateral rules have different implications for the propagation and 

amplification of shocks through the financial system – empirical evidence on it is scarce: the 

collateral feedback channel has so far been studied mostly in theoretical work. 
In this paper, we aim to fill this gap by providing direct empirical evidence on the determinants 

of collateral in a large market where counterparty risk plays a particularly important role: the 

cleared credit default swap (CDS) market. In particular, we explore a novel data set collected 

and maintained by the U.S. Commodity Futures Trading Commission (CFTC) on all CDS trades 

cleared by Ice Clear Credit (ICC), the largest clearinghouse for these contracts; using data that 

covers the members’ portfolios and corresponding collateral posted to the clearinghouse, we ex­
plore what portfolio and market variables determine the collateral levels and panel variation (over 

time and across market participants). That is, we study the empirical determinants of the collat­
eral requirements in this market, and explore the implications for theoretical models of collateral 
equilibrium as well as for financial stability.1 

The data – covering more than 18,000 contracts and all major dealers operating in the cleared 

CDS market for the period 2014 to 2016 – provides us not only with detailed CDS positions of the 

1As we describe in greater detail in the next sections, ICC follows a complex set of procedures that include 
calibration of different scenarios and simulations – together with a discretionary component – to determine the 
amount of collateral each member needs to post. The goal of this paper is not to reverse-engineer this procedure, 
but rather to identify and quantify the main economic determinants of the variation in collateral over time and 
across members. We will therefore study both the direct effect of variables that the clearinghouse takes explicitly 
into account (like portfolio risks) as well as the effect of market variables (like aggregate volatility) that only affect 
margins indirectly. Despite the complexity of the procedure followed by ICC, we show that a few main portfolio risks 
and market variables explain the vast majority of the panel variation in collateral requirements, yielding an accurate 
approximation of the collateral rule that highlights and quantifies its main economic determinants. 
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clearinghouse members, but also with individual margins the clearinghouse requires to collateralize 

the members’ CDS portfolios. While we do not observe this data before 2014 (as CDS clearing 

and systematic data reporting only started in recent years), we do observe CDS prices going back 

to 2004: we can therefore construct the counterfactual empirical distribution of returns to each 

portfolio over the 12 years – between 2004 and 2016 – and compare the observed collateral levels 

with measures of risk built using data that includes the financial crisis. 
We start by documenting several new stylized facts of centrally cleared CDS markets. We 

show that collateralization, defined as the posted collateral over aggregate net notional, can vary 

drastically across clearing member accounts, indicating that large clearing members trade portfolios 

with very different characteristics. Returns on margins, defined as the profit and loss (P&L) over 

posted initial margins, cluster tightly around their mean and exhibit fat tails; these are due to the 

asymmetric distribution of CDS payoffs which make collateralization particularly important in this 

market. 
Guided by the theoretical literature, we then explore which factors determine margins empir­

ically. We categorize potential explanatory variables into portfolio variables, that are specific to 

the collateralized portfolio; and market variables, which depend on the state of the macroeconomy 

or the market participants holding the portfolios. Examples of portfolio variables include portfolio 

size measures (e.g., gross notional) and portfolio risk variables (e.g., standard deviation and VaR). 
Examples of market variables include aggregate and individual default risk and funding costs. 

In view of the prominent influence that VaR has on modern perceptions and modeling of mar­
gin setting (Figlewski (1984), Brunnermeier and Pedersen (2009), Hull (2012), Glasserman et al. 
(2016)), we explore the ability of standard VaR margining rules to explain observed margins in 

this market. VaR plays a central role not only because of its widespread use in theoretical models, 
but also because most clearinghouses (including ICC itself) explicitly use it as an approximate 

description of their collateral-setting rule (Ivanov and Underwood (2011)). The benchmark VaR 

typically discussed is a 5-day 99%-level VaR, according to which collateral should be sufficient to 

cover 99% of the 5-day loss distribution of each member’s portfolio. 
In the data, we find that collateral levels far exceed those implied by the benchmark VaR. In 

fact, for our entire sample period where we observe portfolios and collateral levels (2014-2016), the 

largest realized drawdowns are only around 30% of the posted collateral: exceptions (losses above 

the posted collateral) did not occur at all, despite significant market events such as the Chinese 

stock market panic of early 2015. More strikingly, this conservativeness in collateral setting holds 

true even when we incorporate CDS price movements since 2004, therefore including the large 

shocks occurred during the financial crisis. To perform this analysis, we collect historical CDS 

prices since 2004, and for each portfolio observed in our sample we build the time series of returns 

that the portfolio would have realized over the entire period 2004-2016. We therefore obtain for 

each portfolio held by a member at any point in time an empirical distribution of returns estimated 

over the last 12 years. We can then verify whether on average the collateral posted corresponds 

to the 1st percentile of that distribution, as implied by the 99% VaR. We show that, even when 
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we include large shocks that reproduce those experienced during the financial crisis, the implied 

VaR confidence needed to explain the average level of collateral is between 99.98% and 100%. This 

is a first indication that, empirically, collateral levels focus on more extreme loss realizations than 

typically assumed, consistent with theoretical models such as Fostel and Geanakoplos (2015) and 

with much of the empirical evidence in the remainder of our paper.2 

Having established that standard Value-at-Risk does not explain observed collateral we turn to 

study a wider class of portfolio-specific variables. Specifically, we estimate a panel model relating 

margins to VaR as well as other portfolio risk measures such as expected shortfall, maximum 

shortfall, aggregate short notional, and aggregate net notional. That is, different measures of the 

riskiness of a portfolio that have been used in the theoretical literature. We perform the estimation 

with and without time and clearing member account fixed effects, controlling for aggregate variation 

in market conditions as well as dealer-specific portfolio characteristics not well captured by standard 

risk measures (e.g. idiosyncratic risks). We show that portfolio variables explain a significant 

portion of the panel variation with an overall R2 of 70% without fixed effects, and 86% with fixed 

effects. Compared to just using VaR as the explanatory variable, there is a significant increase 

in explanatory power when alternative portfolio variables are incorporated: this shows that not 

only does the benchmark VaR rule not adequately explain average collateral levels, but VaR also 

misses significant panel variation. This shows that collateral rules depend on dimensions of risk 

not limited to standard loss quantiles, but still related to different forms of risk exposure in the 

member portfolios. 
To better understand the portfolio-level determinants of collateral requirements, we estimate 

a modified version of the margining model proposed by Duffie et al. (2015), where initial margins 

are determined as a mix of two specific portfolio variables: maximum shortfall and short notional 
(the so-called short charge). Their model puts greater emphasis on the maximum loss that the 

counterparty could incur, compared to a VaR rule; it adds a short charge because short CDS 

positions have large downside risks, and “jump-to-default risk” is especially relevant for large net 

short positions. Their model parameters were calibrated to anecdotal evidence; we instead estimate 

them from actual data. We show that this model outperforms VaR in explaining collateral panel 
variation, and captures well its dependence on short positions. It therefore represents a significant 

improvement over simple VaR. Remarkably, the loadings proposed by Duffie et al. (2015) for the 

short charge are basically identical to the ones we estimate from the data. Using our margins data, 
we optimize the loadings in Duffie et al. (2015) to best explain collateral panel variation. This 

modified model achieves an R2 of 67% without fixed effects, and 86% with time and account fixed 

effects, which is particularly notable for a collateral model with just one variable. 
Next, we incorporate market variables into our panel: since collateral rules adapt to market 

2These results are consistent with Berkowitz and O’Brien (2002), who analyze the performance of bank VaR 
models for six large U.S. commercial banks. They test the null hypothesis of a 99 percent coverage rate, and find 
that the VaR estimates tend to be conservative relative to the 99th percentile of the historical distribution of profit 
and losses. Differently from us, however, they find that losses can substantially exceed the VaR, possibly reflecting 
different collateral practices in the 1990s. 
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conditions, we should expect collateral levels to respond to variables that capture the state of the 

economy and the markets. We incorporate measures of aggregate risk, such as VIX and the average 

CDS spread of all dealers, and measures of funding opportunity costs, including the CDS spread of 
each member (that reflects the credit risk of the member, and in turn affects its cost of financing) 

and the LIBOR-OIS (Overnight Index Swap) spread. 
We show that, consistent with standard economic intuition, increases in aggregate risk raise 

the required collateral levels, and we use our empirical estimates to quantify the strength of this 

channel. We find that a one-point increase in the CBOE’s Volatility Index (VIX) leads to a 0.7% 

increase in initial margins. The loading on the VIX coefficient in the regressions reported in Table 8 

is 0.046, indicating that a one-point increase in the VIX leads to an increase of 4.6 million in margins 

from each member (or 0.7% of the average margin posted). Considering that the VIX went up by 

nearly 50 points during the global financial crisis, this suggests a potential 35% increase in initial 
margins, or $230 million, for all members just through the VIX channel. Another way to think about 

this magnitude is that to maintain the same initial margins in response to a 50-point increase in 

the VIX, banks would need to liquidate nearly one quarter of their entire CDS positions. These 

estimates are conservative, because they are ignoring all feedback effects triggered by the liquidation 

of existing positions, which lead to rising volatility and thus increased margins, and because they 

focus on the VIX channel only (without accounting for all the other channels that operate during 

a financial crisis to increase margins, like increases in individual portfolios’ tail risks). 
High default risk (average CDS spread or LIBOR-OIS spread) also induces a large increase 

in collateral requirements, with approximately a twelve million increase in initial margins per 

basis point, again suggesting very large magnitudes for the effect of aggregate risks on collateral 
requirements. 

During distress periods, posting margins becomes costly as funding liquidity tightens. During 

the financial crisis, for example, the LIBOR-OIS spread skyrocketed from 10 basis points to approx­
imately 364 basis points. Increases in the spread of this magnitude would induce large increases in 

required margins and potentially induce sell-offs of CDS positions with significant systemic impli­
cations. 

Interestingly, high funding costs for the counterparties, captured by high individual CDS spreads 

after controlling for the average CDS spread of members, are associated with lower margin levels 

(though with weak statistical significance). This result is consistent with the model of Capponi and 

Cheng (2017), which predicts that as funding costs increase, demand for positions that require high 

collateralization will decrease, so that the equilibrium collateral level becomes lower. Together, 
these market variables help explain as much of the total variation in margins as the time fixed 

effects, thus capturing the entire time-series variation in average margins. These results provide 

direct evidence that margining rules indeed depend also on dimensions of risk not specific to the 

cleared portfolio. 
To summarize, we show that the levels of collateral we observe in the cleared CDS market are 

extremely conservative compared to what standard VaR rules would imply, even after accounting 
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for potential losses as large as those observed during the financial crisis. Moreover, loss quantiles 

and portfolio volatility do not adequately capture collateral, neither in the average level nor in 

the panel variation. Instead, short charge and maximum shortfall – measures focusing on extreme 

risks of the portfolio, to which a short CDS contract is particularly exposed – describe much better 

actual margin settings. Margins also depend on measures of aggregate risks and on funding costs. 
These results provide supporting evidence to specific theoretical models of the collateral-feedback 

channel. They are consistent with the equilibrium theories of Fostel and Geanakoplos (2015), who 

predict that equilibrium collateral rules are set to cover the worst-case loss scenario, rather than 

covering only a certain quantile loss as in the VaR case, so that no defaults are observed in equi­
librium. Their theory is derived in a binomial economy; our results are interesting in this regard 

because they provide direct evidence that their theory extends to more general economies (Fostel 
and Geanakoplos (2015)). 

The dependence of the margining rule on the maximum of the loss distribution as opposed to 

other less extreme risk characteristics like lower quantiles or standard deviation also suggests the 

existence of an important nonlinearity: changes in risk that do not affect the extreme tail may have 

little effect on the total amount of collateral required – all the effects are concentrated in the risk 

of very large losses. This could amplify and concentrate the margin spirals at the very worst times 

(after large negative shocks that induce a change in the perceived risk of tail events), while at the 

same time dampening the margin spiral for moderate-sized shocks. While most of the theoretical 
models have not incorporated this nonlinearity, it could play an important role in explaining the 

radically different dynamics of the economy during times of crisis. 
Of course, there are several differences between the purely theoretical model of Fostel and 

Geanakoplos (2015) and our empirical setting. For example, we consider a clearinghouse that 

determines collateral rules in an oligopolistic setting (given that ICC is the largest clearinghouse 

with a certain degree of market power), whereas the theoretical model of Fostel and Geanakoplos 

(2015) assumes a competitive market. Nonetheless, most real life situations of margin setting involve 

some degree of market power, so our analysis of the cleared CDS market should be informative 

about other environments and markets in which collateral is required for trading. We therefore 

believe that our empirical results can be quite informative about the collateral channel, especially 

considering the scarcity of empirical evidence available. 
Our empirical findings on the relation between margins and market variables have important 

implications for funding liquidity and systemic risk: they show that margining rules do indeed 

depend strongly on market conditions, and they may dampen or reinforce margin spirals depending 

on the nature of market shocks, as predicted for example by Brunnermeier and Pedersen (2009). 
When a common market shock increases aggregate default risk in the market or aggregate volatility, 
this significantly increases the required margins for members, potentially triggering a margin spiral. 

Our paper relates to a large theoretical literature on the relation between margin requirements 

and asset prices, collateral equilibrium, and demand of collateral, and to a small empirical literature 

studying margin setting in practice. Brunnermeier and Pedersen (2009) explore the link between 
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margin requirements and asset prices, highlighting the self-reinforcing feedback loop between mar­
ket liquidity and margin requirements set according to VaR. Other important contributions include 

Hardouvelis and Peristiani (1992) who study the influence of margin requirements on the stabil­
ity of stock prices in the Tokyo stock exchange, and Coen-Pirani (2005) who show that margin 

requirements only affect stock prices when they are non-binding. Chabakauri (2013) uses a dy­
namic equilibrium model to show that tighter margin constraints increase prices of low-margin 

assets more than prices of high-margin assets.3 A separate branch of the literature has explored 

the theory of endogenous collateral requirements and their general equilibrium implications. These 

models typically show that collateral requirements are determined not only by features of the fi­
nancial contract, but also by market conditions and specific characteristics of market participants 

(e.g., Geanakoplos (1997), Holmström and Tirole (1997), Brunnermeier and Sannikov (2014), and 

Fostel and Geanakoplos (2015)).4 While mostly stylized, these endogenous collateral rules typically 

do not resemble VaRs but are, in fact, more complex functions of the state of the economy and the 

values of the assets. 
While the literature surveyed above has focused on bilaterally traded contracts, few other papers 

have explored the determinants of collateral requirements in the context of cleared derivatives 

markets, where a clearinghouse becomes the counterparty to every trade. Koeppl et al. (2012) study 

the economic incentives behind the design of margins rule leading to efficient clearing arrangements, 
while Biais et al. (2016) analyze to which extent margin requirements can be designed to mitigate 

counterparty risk. The impact of central clearing reforms on the collateral demand for derivatives 

transactions is investigated in Heller and Vause (2012), Sidanius and Zikes (2012), and Duffie et al. 
(2015), assuming exogenously specified margin requirements based on VaR, expected shortfall, or 

a mix of the two.5 

Empirical work on the determinants of collateral is scarce, mostly for the difficulty of obtaining 

data on positions and collateral.6 A small literature has studied margining in the futures market. 
3A related literature has explored how financially constrained intermediaries can impact the macroeconomy and 

asset prices, see Adrian and Boyarchenko (2012), He and Krishnamurthy (2013), and Brunnermeier and Sannikov 
(2014). A stream of studies (Booth et al. (1997), Longin et al. (1999), Broussard (2001)) utilizes the techniques of 
extreme value theory to account for leptokurtic returns in financial markets, since empirically observed returns often 
deviate significantly from normality, which gives rise to higher “adequate” margins (assuming adequate margins are 
those given by VaR).

4Other relevant works include Fostel and Geanakoplos (2014) who study how leverage can be endogenously de­
termined in a collateral equilibrium model along with its dependence on volatility; Geanakoplos (2003) who argues 
how bad shocks tighten margins requirements and lead to more likely defaults. The impact of endogenous margin 
requirements on asset prices has been studied in Rytchkov (2014), and in Geanakoplos and Zame (2014) for durable 
goods.

5Some other works have studied the determination of collateral requirements accounting for systemic interdepen­
dencies. Cruz Lopez et al. (2017) account for the variability and interdependence of profit and losses of clearing 
members when determining the clearinghouse margin requirements. Menkveld (2017) argues that crowded posi­
tions present hidden risks to the clearinghouse, and that margin requirements should take into account portfolio 
concentration. 

6Collateral data for non-cleared OTC markets is often scattered among a variety of participants, with no centralized 
datasets available. Clearinghouse data contain proprietary information of large market participants and are often 
disclosed only under strict confidentiality and anonymity arrangements. Due to such data limitations, there is little 
empirical work focusing on portfolio-level margins (as opposed to individual-security collateral requirements), and on 
how well conventional risk measures relate to the required collateral levels. 
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Figlewski (1984) and Gay et al. (1986) test the extent to which margins in futures markets protect 

against counterparty losses, but do not explore the determinants of the margining rule. Fenn and 

Kupiec (1993) investigate empirically whether futures clearinghouses set margins in an efficient 

(cost-minimizing) way using two simple models of optimal margin setting, finding that neither 

model captures margins well. More recently, Hedegaard (2014) documents the relation between 

average margins and price volatility in the cross-section of futures contracts. He finds contract-
specific volatility to be the main determinant of the average margin levels by contract, with a 

non-negligible role played by tail risks; he also shows that clearinghouses do not treat contracts 

uniformly when varying margin requirements. His results echo those of Fishe and Goldberg (1986) 

and Goldberg and Hachey (1992) who also document price volatility being a primary concern for 

margins. 
To the best of our knowledge, our study is the first to investigate empirically the relation 

between actual margins, portfolio exposures, and market variables. We focus on the OTC market 

of credit default swaps (CDS), a major market for default risk transfer which has experienced 

a remarkable growth in the years before the global financial crisis, and has been at the center 

of many policy debates during the financial crisis. Over the past decade, the CDS market has 

transitioned towards mandatory clearing: after two parties (referred to as clearing members) enter 

a CDS contract, all counterparty obligations are transferred to a clearinghouse. Operating as a 

central counterparty (CCP), the clearinghouse insulates members from default risk, but requires 

them to post daily-settled collateral (margin). 
Our study of collateral in the cleared CDS space builds upon the above-mentioned studies, but 

enriches and complements them along several dimensions. First, while prior studies have looked 

at headline margin requirements for individual securities (Figlewski (1984), Gay et al. (1986), 
Hedegaard (2014)), their approaches are less applicable in the modern setting of portfolio margining, 
where margins are set at the portfolio level rather than for individual contracts (as in the case of CDS 

clearinghouses). Our disaggregated, granular CDS data provide a valuable source of information 

for analyzing portfolio-level collateral requirements and the associated systemic risk implications 

(Huang and Menkveld (2016)). Second, we consider a market where payoffs are highly skewed 

(default probabilities can jump upward suddenly, and defaults can occur instantaneously), which 

implies that collateral plays a crucial role in allowing this market to function properly. Third, 
while existing studies focus mostly on the cross-sectional dimension of margins, we focus on both 

the cross-sectional and time-series variation. Fourth, we consider not only portfolio-specific risk 

measures, but also aggregate risk and funding measures as potential determinants of collateral – all 
factors that can play an important role in the amplification of aggregate shocks via the collateral-
feedback channel. Fifth, we document that margins are best captured by using not only a tail 
risk measure (maximum shortfall), but also a short charge (a fixed percentage of aggregate short 

notional). As the short charge does not depend on historical probabilities nor on the state of the 

market, this shows that clearinghouses use a rule that is robust to the exact specification of the 

model for tail events. Lastly, we show that despite its use in many theoretical models, Value-at-Risk 
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contributes very little to the explanation of margins after controlling for maximum shortfall and 

aggregate short notional. 
The rest of the paper is organized as follows. Section 2 describes our data. We test the VaR 

rule in Section 3, and present our full analysis of the determinants of collateral rules in Section 4. 
Section 5 discusses the interpretation of our results and concludes. 

2	 Collateral requirements in the Cleared CDS Market: Institu­
tional Details and Data 

We describe the institutional setting of the cleared CDS market in Section 2.1, and the dataset in 

Section 2.2. 

2.1 Clearinghouse margining in practice 

Clearinghouses have significant discretion over modeling assumptions and parameters used to gen­
erate and justify margin requirements. They set them taking into account market conditions, the 

demand for trading, and collateral quality. In practice, margining rules involve a wide range of 
scenarios and simulations to arrive at a portfolio loss distribution, requiring the clearinghouses to 

make various modeling and statistical assumptions. 
Most clearinghouses, including ICC (e.g., Ivanov and Underwood (2011)), state that their 

margins are broadly “set to cover five days of adverse price/credit spread movements for the portfolio 

positions with a confidence level of 99%”, which we refer to as a 5-day 99% Value-at-Risk (VaR) 

margining rule. However, this is only a simplified description of their actual margining rules, for 

two main reasons. First, scenario-specific add-ons are often applied to produce the final margin 

requirement (CME Group (2010), ICE Clear US (2015)).7 In particular, the margin requirement set 

by ICC is the sum of seven components. In addition to considering (i) losses due to credit quality 

(changing credit spreads), the methodology also considers losses due to (ii) changing recovery rates 

and (iii) interest rates. There are additional charges capturing (iv) bid-offer spreads, (v) large, 
concentrated positions, (vi) basis risk arising from different trading behavior of indices and their 

constituents. Finally, there is (vii) an additional jump-to-default requirement due to the potential 
large payouts associated with selling credit protection on single name contracts. Similar to the 

Basel capital requirements, the ICC margin framework is a bucket approach, where there is an 

individual methodology for calculating each of the seven components (“buckets”), and the final 
collateral requirement is the simple sum of these components. Second, even if clearinghouses were 

7As the primary regulatory authority of U.S. Derivative Clearing Organizations, the CFTC has access not only 
to portfolio level margins data, but also collects documentation of the margin framework for oversight purposes. 
This framework contains a detailed breakdown of margin components, model assumptions, and formulas used in ICE 
Clear Credit’s margin methodology, though not the calibrated parameters and the calibration process. This document 
is proprietary and only accessible by CFTC officials. However, ICE Clear Credit discloses publicly a high level 
break down of margin components, for which we provide a review in this section. For ICC’s public disclosure, see 
https://www.theice.com/publicdocs/clear_credit/ICE_CDS_Margin_Calculator_Presentation.pdf. 
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restricted to using VaR based margining rules, the confidence level, margin period risk, and the 

distributional assumption of losses are inputs that give the clearinghouse significant freedom in 

setting the actual margin levels. 
Overall, clearinghouses employ complex rules to determine the amount of required margin. 

These rules make it hard to understand what are the main economic determinants of collateral 
requirements, partly because they are complex and depend on the interactions of a myriad of 
variables and calibration choices, partly because they do not explicitly take into account variables 

that, however, may still matter indirectly: for example, aggregate volatility or default risks do not 

directly enter the calculations, but may still affect the collateral rule empirically because of their 

effect on the scenarios the clearinghouse uses to simulate portfolio losses, or through the choice of 
parameters. 

The goal of this paper is not to reverse-engineer this complicated procedure, but rather to iden­
tify and quantify the main economic determinants of the variation in collateral over time and across 

members. As we show later, despite the complexity of the procedure followed by ICC, empirically 

a few main portfolio risks and market variables explain the vast majority of the panel variation 

in collateral requirements. The ability to extract and quantify the main economic determinants of 
the collateral rule allows us to speak to economic models of the collateral equilibrium, that cannot 

possibly include the entire margin-setting procedure, but can instead incorporate the main channels 

that we highlight to be most important in our empirical analysis. 

2.2 Data and Summary Statistics 

We provide an overview of our data and present descriptive statistics of the key variables. We 

construct a database of the entire universe of CDS positions cleared by the dominant CDS clear­
inghouse, ICE Clear Credit (ICC), for the two years between May 2014 and April 2016. ICC 

managed 60% of the U.S. cleared CDS market in 2015. 

2.2.1 Clearinghouse collateral data: the Part 39 data set 

The Dodd–Frank Wall Street Reform and Consumer Protection Act grants the U.S. Commodity 

Futures Trading Commission (CFTC) authority over Derivative Clearing Organizations (DCOs). 
As a result, major clearinghouses recognized as DCOs are required to report confidential swap 

trade data to CFTC on a daily basis. The data are collectively referred to as “Part 39 data,” as 

the relevant rules and regulations are codified in Title 17, Chapter I, Part 39 of the Code of Federal 
Regulations. Part 39 data provides a complete overview of the centrally cleared swaps in the U.S..8 

We obtain clearing member data from the CFTC Part 39 database.9 Our data set consists 

of both positions data and account summary data for CDS trades cleared by ICE Clear Credit 

8While some swaps are under the jurisdiction of the Securities and Exchange Commission (SEC) so that bilateral 
trades need not be reported to CFTC, they are captured by Part 39 once cleared.

9Because the data set contains proprietary and confidential trade positions and margins, they can only be accessed 
by CFTC officials and are not distributed for legal reasons. 
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(ICC), which is the main clearinghouse for the CDS market (combined with ICEU, the European 

arm of ICE’s CDS clearing, they account for over 90% of the cleared CDS market registered in the 

database). Our sample period covers two years, from 2014/05/01 to 2016/05/01, for a total of 517 

business days. 

2.2.2 CDS positions data 

Credit default swaps (CDS) are credit derivatives used to trade the credit risk of a reference 

entity. With a fixed reference obligation, the protection buyer (the long position) is obligated to 

pay a quarterly premium (the coupon payment) to the protection seller (the short position) up 

until contract maturity or the arrival of a credit event, whichever occurs earlier. Upon arrival 
of the credit event, the seller pays to the buyer the difference between the face value and the 

market value of the reference obligation. When the reference entity is a sovereign or corporate 

entity, the CDS is referred to as a single name CDS, and is uniquely identified by its coupon rate, 
maturity, reference bond seniority, and doc clause (that defines what constitutes a credit event), 
typically rolled out quarterly. When the reference entity is a weighted basket of bonds from various 

sovereign or corporate entities, it is referred to as an index CDS, typically rolled out semiannually. 
When components of the reference basket default, the protection seller pays a pro rata cash flow 

depending on the weights on the components. The index contract is then reversioned (i.e., the 

basket is updated), and coupon payments and the contract notional are reduced accordingly. A 

CDS index contract is identified by its notional, coupon rate, maturity, reference basket, version, 
and doc clause. Our data set includes both single name and index contracts. 

The CDS position component of the Part 39 data set contains daily reports of each account’s end­
of-day (EOD) position in each cleared CDS contract. For each day/account/contract combination, 
we observe long/short gross notional, EOD prices for the contract,10 the currency denomination 

and exchange rates, and the mark-to-market (MtM) value of the position. 
In the considered sample period (2014–2016), the most liquid CDS index contracts (but not all 

single name CDSs) were mandatorily required to be cleared through a clearinghouse. As a result, 
while our data set captures 100% of the mandatorily cleared contracts, it presents only a partial 
view of the entire CDS market. Our data set includes 465 distinct contract names, 455 of which 

reference single name CDS contracts and 10 of which correspond to indices. A total of 18,179 

distinct contracts referencing these names were cleared during our sample period. 
We adjust for changes in reference names due to spin-offs, split-offs, or combined firms from 

mergers and acquisitions. After accounting for this, we are left with a total of 443 distinct names. 

2.2.3 Part 39 CDS prices 

End-of-day (EOD) prices within the Part 39 data set are provided by ICC in terms of points upfront. 
CDS prices historically have been quoted in terms of conventional or “break-even” spreads, defined 

10See Section 3.1 for a brief overview of standardized CDS price quote conventions. 
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as the annualized quarterly spread payment per unit of purchased protection that makes the market 

value of the position zero at initiation. Contracts thus were negotiated bilaterally over the counter 

and, depending on when they were traded, carried different spreads. The push for standardized 

CDS contracts, however, has drastically changed the landscape of CDS price quotes and traded 

contracts. In particular, the 2011 “CDS Big Bang” resulted in standardized CDSs having fixed 

coupons (usually 100 or 500 basis points). Thus, contract market values are often non-zero at 

outset. When trading standardized CDSs, the protection buyer makes an upfront payment to the 

protection seller at initiation (or vice versa). Price quotes are then in “points upfront” instead 

of break-even spreads. For instance, if a CDS contract were quoted at 0.97, the protection buyer 

would pay 1 − 0.97 = 3% of the notional to the seller at contract initiation. Notice that this quote 

convention is analogous to bond quotes, where a higher price quote represents a lower payment for 

the buyer. Some data providers, such as Bloomberg, convert the quoted prices using a standardized 

model provided by the International Swaps and Derivatives Association (ISDA) and, by convention, 
record break-even spreads. 

We note that quoted prices are model prices. Since CDSs trade relatively thinly, EOD transac­
tion prices are not always available. ICC and Markit have a specific price discovery process tailored 

to the CDS market. Participants submit price quotes at the end of every business day and the 

clearinghouse creates periodic trade executions among participants via an auction process. The 

resulting prices are used for daily mark-to-market purposes. 

2.2.4 External CDS spreads and interest rates data 

We complement our Part 39 data with several additional data sets. First, we collect 5-year on-
the run CDS spreads from Markit and Bloomberg, going back before the beginning of our sample 

period.11 Second, we obtain from Bloomberg the time series of the Overnight Index Swap (OIS), 
the overnight swap rate, and the London Interbank Offered Rate (LIBOR), the overnight rate for 

unsecured lending between banks, both of which we use to measure funding costs. The LIBOR-OIS 

spread is typically viewed as a measure of financial sector stress. Third, we obtain from Bloomberg 

the time series of the VIX. For all three data sets, we obtain time series ranging between 2004/01/01 

and 2016/09/13. 

2.2.5 Account and margin data 

The account summary portion of the Part 39 data set contains daily reports of EOD account-level 
information for each clearing member account. For each day/account combination, we observe the 

so-called initial margin requirement, the actual amount of initial margin posted, the currency de­
nomination and exchange rates, and the MtM value of the portfolio. The initial margin requirement 

is the level of collateral the clearinghouse demands from the account holders, whereas the margin 

11Markit had complete data for all of our 443 names except for the 10 credit indices and 3 single name series, 
STCENT, ATSL and COMMSAL; for these 13 names, data was unavailable or incomplete, so we instead obtained 
the CDS spreads data from Bloomberg. 
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posted is the actual level that account holders supply (after haircuts), which is usually the same as 

the required amount or very close.12 

It is useful to emphasize that what is referred to as the initial margin in this market – the 

collateral requirement we study in this paper – is the collateral kept by the clearinghouse with 

the purpose of buffering against potential future losses in case clearing members default on their 

obligations. Note that despite the name “initial” margin, this margin is not just posted at initiation 

of a CDS positon: instead, it is updated every day and it covers the entire portfolio of a clearinghouse 

member. It therefore corresponds directly to what is typically referred as collateral requirement 

in standard models. We will use the terms initial margin, margin requirements, and collateral 
requirements interchangeably. 

All cleared contracts are marked to market daily, so that the change in current value of the 

portfolio is transferred to the clearinghouse by the next day. This transfer is referred to as variation 

margin, which is distinct from the initial margin as it does not represent a stock of collateral meant 

to cover for future changes in the value of the portfolio, but rather a cash flow reflecting the 

mark-to-market process. 
To clarify, suppose that two clearing members A and B have a position with the clearinghouse. 

Each member posts a certain amount of collateral to the clearinghouse to buffer against future 

changes in the value of the cleared position when he defaults on his obligations: this is the initial 
margin. Now suppose that after a price movement, the value of A’s cleared portfolio decreased by 

$1, and the value of B has increased by $2. A then has to transfer $1 to the clearinghouse, which 

is then passed through to the counterparty holding the offsetting position; similarly, B will receive 

$2 from the clearinghouse, that in turn the clearinghouse has obtained from members holding the 

opposite position: these payments, that correspond to the marking to market of the positions, 
constitute the variation margin. After the price move, or in fact even independently of that, it 

is possible but not necessary that the two members might have to also adjust the initial margin, 
if the clearinghouse determines that the riskiness of their positions has changed (directly because 

of the price changes, or indirectly because of changes in market conditions). But in general, the 

variation margin and the initial margin are not in a mechanical relation to each other. To sum up, 
the posting of initial margins is to cover for future potential price changes, whereas the variation 

margin payment is to settle current price changes. In this paper, we focus on the initial margin, as 

it maps directly into the collateral requirements of economic models. 
The cleared CDS market is dominated by a handful of clearing members who act as dealers to 

the outside market. Smaller clearing participants access the cleared market by becoming customers 

to clearing members. Each clearing member may have several accounts with ICC. The account 

is designated as a “customer account” if the account positions are taken on behalf of a customer, 
and designated as a “house” account if the positions are proprietary. Customer accounts are 

12Margin requirements are reported separately in USD and Euro; we combine them using the appropriate exchange 
rate to arrive at the total initial margin requirement for the entire portfolio in USD. The actual collateral posted 
is often reported entirely in USDs and covers both the USD and Euro requirements, so the distinction between 
currencies is immaterial. 
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commingled; that is, they consist of multiple sub-accounts for many customers, and segregated 

customer specific data are not reported. We observe 44 accounts in total, each identified by a 

distinct clearing firm identification number. Of these accounts, 13 are designated as customer 

accounts and 31 are house accounts. 
Many house accounts are set up to help with the processing of client trades, but have little 

open interest, as clearing members usually use one house account to hold the majority of their 

proprietary positions. We thus define a house account to be “auxiliary” if there are little to no 

positions associated with them. To be precise, a house account is auxiliary if (i) the average gross 

notional is less than $20 billion USD, (ii) the average number of distinct CDS contracts traded is 

less than 200, and (iii) the number of distinct CDS reference entities traded is less than 40. We 

refer to the remaining house accounts as “active” house accounts, of which there are 13. 
We provide descriptive statistics for each of the three account categories (active house, customer, 

and auxiliary house) in Table 1. Table 1 reports, for each account, the pooled averages of the key 

variables over our sample period. Pooled averages are computed by averaging point observations 

within the account categories and across the sample time period. 

T able 1 

Active house accounts trade on average 4,042 different contracts, measured by the number of 
distinct contracts in which the account has an open interest, distributed over 240 names, measured 

by the number of distinct reference entities in which the account has an open interest. In contrast, 
the customer accounts trade around 73 contracts distributed over 33 names. Customer positions 

tend to concentrate in the most liquid index contracts, whereas house positions contain many more 

single name trades. Auxiliary house accounts, which have open positions in about 99 contracts over 

24 names on average, resemble characteristics of customer accounts as they are set up primarily to 

facilitate client needs. 
The larger number of names traded by house accounts contribute to a higher gross notional 

compared to customer accounts, $169 billion versus $46 billion. The levels of collateral posted 

(initial margins), however, are similar in magnitude for both, at $658 million versus $614 million. 
Measured by margins to gross notional, the clearinghouse requires a lower collateralization rate for 

active house accounts compared to customer accounts. This is because dealers usually have better-
hedged portfolios in their active house accounts, which results in a lower margin per unit of gross 

notional, compared to customers who often have large directional exposures. The gross notional 
and initial margins of auxiliary house accounts, at $8.3 billion and $58 million, respectively, indicate 

little trading activity. In fact, six auxiliary house accounts had zero margins throughout, indicating 

no trading activity at all. We excluded these accounts when calculating descriptive statistics of 
auxiliary house accounts. 

We next analyze the time variation and average level of aggregate required and posted collateral. 
More specifically, Table 2 reports statistics of the time series of aggregate initial margin requirement 

and actual posted collateral in USD, aggregated over all accounts, over all customer accounts, and 
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over all active house accounts respectively. We note that the summary statistics of both initial 
margin requirements and posted collateral trace each other closely, and support our approach of 
focusing only on the initial margin requirement.13 

In the aggregate, about $17 billion worth of assets are immobilized as collateral (initial margin). 
There is significant variation over time, ranging from 15 to 22 billion USD. Customer margins are 

on the same order as that of active house margins, consistent with numbers reported in Table 

1. The time variations in margins for active house accounts and customer accounts are highly 

correlated, as evidenced by the sum of their standard deviations (0.6+1.2 billion USD) being close 

to the standard deviation of the aggregate (1.7 billion USD) – the two would be exactly the same 

if they were perfectly correlated.14 

T able 2 

Our analysis of portfolio specific margins in the remainder of the paper focuses only on the 

active house accounts. This is because customer accounts are commingled and margins information 

aggregated. Therefore, the observed margins are not associated with a specific institution’s portfolio 

in our dataset, so that we cannot study the relationship between collateral posted and portfolio 

characteristics. We note, however, that our empirical analysis does not require observing the 

collateral posted by all clearing participants, at least to the extent that enough information can be 

extracted from the clearing members whose portfolios we fully observe. We also exclude auxiliary 

house accounts because there are little to no positions associated with them. 
To gain further insight into active house account margins, we compute the level of collateraliza­

tion for cleared portfolios. We measure this with the margin to net notional ratio, which accounts 

for varying sizes of cleared portfolios. We compute a portfolio’s net notional by computing the net 

notional amount for each reference name, and then summing the absolute net notionals across all 
names. 

The results are reported as a histogram in Figure 1. For each active house account/day combina­
tion we compute a margin to notional ratio by taking the ratio of the initial margins requirement and 

aggregate net notional. The resulting 6,721 observations cluster into two distinct sub-populations. 
92.3% of the observations cluster around a sub-population mean margin to notional ratio of 2.4%. 
The remaining 7.7% of the observations cluster around a sub-population mean margin to notional 
ratio of 14.3%. All observations of the latter sub-population are associated with one single clearing 

member account. This analysis demonstrates that house account portfolios can have very different 

risk characteristics, leading to very different collateralization levels. 
13The initial margin requirement is arguably economically more important, as it represents the level of collateral 

that has to be immobilized, whereas posted collateral levels may fluctuate due to clearing member operational reasons. 
14We note that there are few instances where the posted collateral is actually lower than the margin requirement, 

representing under-collateralization. We attribute this to member operational issues that are permitted by the 
clearinghouse. As no member was declared to be in default during this period, the clearinghouse may have considered 
such deficits of secondary importance. 
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F igure 1
 

2.2.6 Market events during our sample period 

Mandatory clearing of standardized CDS contracts was imposed only after the financial crisis. Thus, 
our data set does not include the years of the crisis in which the financial system (and the CDS 

market) underwent significant stress, which are particularly interesting times for understanding 

collateral requirements and their interaction with the broader economy. 
There are, however, two mitigating elements that allow us to understand the behavior of col­

lateral even in the limited span of time covered. First, even within our two-year sample, many 

significant events resulted in volatility spikes, shocking the global economy and, in particular, the 

CDS market. Examples of these events include (i) the plummet of oil prices in November 2014, 
when Saudi Arabia blocked OPEC from cutting oil production; (ii) the plunge in the Euro when the 

ECB chief Mario Draghi expressed unexpectedly dovish outlooks on monetary policy in January 

2015, (iii) the 2015–2016 stock market sell-off, starting with the Chinese stock market burst (“Black 

Monday”), and followed by an unexpected devaluation in the Renminbi, which was further fueled 

by Greek Debt default; (iv) the unexpected negative interest rate policy announced by the Bank 

of Japan in January 2016, and (v) the volatility spike when the Brexit referendum was announced 

in February 2016. Our sample period also covers the (widely expected) interest rate hike by the 

Federal Reserve in December 2015, the first increase in nearly a decade. 
Second, while we do not have positions data going back to the financial crisis, we do observe 

CDS spreads going back to 2004. This means that we are able to do counterfactual simulations 

of portfolio returns, that include market movements observed during the financial crisis. This will 
provide additional information about how well collateral buffers can absorb shocks of magnitudes 

as large as those observed in 2008–2009. 

3 Collateral requirements and the Value-at-Risk rule 

Most of the theoretical literature on the collateral channel (e.g., Brunnermeier and Pedersen (2009)) 

makes the assumption that collateral constraints are specified by an exogenous VaR rule. This is 

consistent with claims of major clearinghouses that collateral requirements are set targeting a VaR 

rule (e.g. Ivanov and Underwood (2011) for ICC). A small theoretical literature (e.g. Geanakoplos 

(1997) and Fostel and Geanakoplos (2014)) has explored the endogenous determination of collateral 
requirements, and has highlighted that rather than a VaR rule, more extreme measures of portfolio 

risk should be expected to arise in equilibrium. 
In this section, we directly test whether a VaR margining rule (or a close approximation of it) is 

observed in the cleared CDS market. We only use data associated with active house accounts. This 

is because, as mentioned above, ICC practices portfolio margining: margins are set at a portfolio 

level and based on the portfolio rather than individual position characteristics, while customer 
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accounts’ portfolio margins are commingled (aggregated) in our data, so we do not observe them 

separately. Since VaR is not summable, using aggregated customer account data would distort our 

analysis. 
We find that collateral requirements in the CDS market are not consistent with those prescribed 

by a VaR constraint, regardless of the confidence level and margin period of risk used for the returns. 
One of our main findings is that the required collateral levels appear to be orders of magnitude 

higher than what is required to cover 1%-probability losses, even if we include in our sample returns 

that would have been observed during the financial crisis. 
Our results thus suggest that the observed collateral requirements differ significantly from those 

typically assumed exogenously in existing theoretical work, and that theoretical models should 

account for additional determinants of collateral levels (explored in more detail in Section 4). 

3.1 Notation 

Consider a set of dates T := {1, . . . , T }, a set of contracts I := {1, . . . , I}, and a set of market 

participants (clearing members) N := {1, . . . , N}. The portfolio held by participant n at the end of 
date t is a vector Xn ∈ RI . The i-th component of Xn

t , Xn , is the portfolio’s notional position int i,t

contract i. Xn can be positive or negative, depending on whether n has a long or a short position i,t 

in the contract i. 
We denote the end-of-day (EOD) prices of cleared contracts at time t by Pt, whose i-th com­

ponent, Pi,t, is the EOD price of contract i. As discussed in Section 2, the mark-to-market value 

of the portfolio X at time t can be computed as15 

MtMt(X) : = Mark-to-market value  
= Position net notional × (1 − price) 

i 

= X · (1 − Pt) 

The profit and loss (P &L) between day t and day t+M (for a given time-t portfolio X) is computed 

as 

ΨM,t(X) := MtMt+M (X) − MtMt(X) (1) 

= X · (Pt − Pt+M ) . 

M,α We use V aR (·) to denote the α−th quantile of the profit-and-loss (P&L) distribution over t 

an M−day period starting at t. Hence, Value-at-Risk (V aR) is defined by 

M,α P(ΨM,t(X) < −V aR (X)|Ft) = α, t 

15There is an additional adjustment factor for CDS indices that have been reversioned after the default of a 
component, which we omit here for ease of exposition but account for in our empirical analysis. The adjustment 
factor is smaller than one and accounts for a proportional decrease in effective notional due to the contract payout. 
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where Ft represents the information set available at time t. M is commonly referred to as the 

margin period of risk (or liquidation period), and 1 − α is the confidence level. 

3.2 Testing the Value-at-Risk margining rule: two approaches 

The standard VaR collateral rule assumed in the literature stipulates that collateral requirements 
M,α (initial margins) at time t are set equal to V aR (·), for a certain confidence level α and margin t 

period of risk M . That is, under the VaR rule, it states that initial margins are set as 

M,α H0 : IMt(Xn) = V aR (Xn),t t t 

where IMt(X) are the actual margins required by the clearinghouse at time t for holding the portfo­
lio X. This hypothesis can be directly tested using our data by comparing the actual clearinghouse 

collateral requirements with the empirical quantiles of the loss distribution. 
We test the VaR hypothesis H0 using two different approaches. The first approach is applicable 

in the circumstances where α and M are known. For instance, CDS clearinghouses typically claim 

that initial margins are set to cover 5-day losses with 99% confidence (Ivanov and Underwood 

(2011)). Under this assumption, H0 should hold with α = 1% and M = 5. If initial margins are set 

to be a certain conditional quantile of the returns distribution (say the 1% quantile), the fraction 

of times the portfolio loss exceeds the posted collateral is expected to be on average equal to that 

quantile (1% of the time). We refer to this approach as the time-series test of the VaR hypothesis; 
this is in fact equivalent to the “backtesting” procedure advocated by the Basel Accords (Hull 
(2012)). 

A second approach can be considered in the cases that α and M are unknown. Rather than 

testing the rule jointly across all counterparties, this test looks at whether the same VaR rule is 

applied to all counterparties, similar to the approach implemented by Gay et al. (1986). That is, 
no matter what α and M are, under VaR margining we would expect the same margining rule to 

be applied to all counterparties. This is a conceptually important test because it reveals whether 

the proposed rule (V aR) is able to capture all portfolio- and counterparty-specific factors that are 

relevant for determining margin requirements. We refer to this as the cross-sectional test of the 

VaR hypothesis. 

3.3 Time-series test of the VaR hypothesis 

We start with the time-series test of the V aR hypothesis, using the null H0 described by the 

clearinghouse (Ivanov and Underwood (2011)): M = 5 days and α = 1%. Since IMt(Xn) is t 

observable in our data set, the critical point of our analysis is to estimate the empirical distribution 

of the P&L of the portfolio over M days (ΨM,t) . 
We consider two different approaches. First, we perform a factual analysis and compute realized 

5-day ahead P&L for each actual portfolio held by active house accounts, during our sample period. 
That is, we ask the following question: have actual exceptions, i.e exceedance of losses beyond the 
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posted collateral, been as frequent as the margining rule would predict (1% of the time) within our 

sample? 

Second, we perform a counterfactual analysis and estimate what the 5-day ahead P&L would 

have been for each portfolio, using historical 5-year CDS spreads going back to 2004. This counter-
factual analysis compares the collateral requirement with the distribution of losses on the portfolios 

held at each point in time, but using the distribution of returns for a much longer time period, that 

includes the financial crisis. That is, we ask the following question: would exceptions be as frequent 

as the margining rule would predict (i.e. 1% of the time), given the portfolios we observe in our 

sample period and returns observed during the entire period 2004-2015? Such a counterfactual 
analysis remedies to the lack of crisis-level downturns data in our sample. 

3.3.1 Using realized returns 

Recall that Part 39 data contains not only positions data, but also EOD price data in points upfront 

for each cleared contract. We can then easily compute the 5-day ahead P&L using Eq. (1). In 

particular, for each account/business day pair (n, t), we compute 

Ψ5,t(Xn
t ) = Xn

t · (Pt − Pt+5). 

We define the ratio of P&L to initial margins as the return on margins for cleared portfolios. 
Since both the size of losses and margins are expected to increase with portfolio volatility, this 

normalized measure that controls for size is better suited for comparison across portfolios. Notice 

that a margin exception corresponds to a negative return on margin that drops below -100%. So the 

empirical distribution of exceptions is simply the fraction of times we observe a return on margin 

below −100%. 
Figure 2 reports the distribution of realized 5-day ahead returns on margins. We compute 

returns on margins for each account/day in our sample and obtain (517 − 5) × 13 = 6, 656 obser­
vations. A few interesting patterns emerge from the figure. First, the dispersion of returns in our 

sample period is quite small relative to the amount of collateral posted. Second, the distribution of 
returns on margins does not exhibit distinctly heavy tails, despite the fact that several important 

events occurred during our sample period as highlighted in Section 2.2.6. Third, and most rele­
vant for the analysis of margining and losses, the most negative return observed during our sample 

period is only 30% of the collateral requirement. That is, while under a 5-day 99% VaR rule we 

would expect to see exceptions in 1% of our sample (or about 66 account/days), no exceptions were 

actually observed. This serves as a preliminary indication that the VaR rule with 99% confidence 

does not describe well the actual collateral requirements in the CDS market. 

F igure 2, T able 3 

In order to formally test the hypothesis H0, we perform a statistical test comparing the observed 

empirical frequency (0) to the one predicted by the model (α). The distribution of the test statistic 
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(the difference between the empirical frequency and α) is derived in Appendix A.2. 
Table 3 reports both the descriptive statistics for these returns on margins and the results 

of our time-series test. We observe that the mean return on margin is close to zero, and much 

smaller than the standard deviation of 5.22%. The distribution tightly clusters around the mean: 
about half of the mass of the empirical distribution of returns lies between ±2%. Aggregating over 

account/time observations, we find that the empirical 99% Value-at-Risk is approximately 14% of 
posted margins; that is, around 7 times lower than the one implied by the VaR rule. Approximately 

98% of the observations lie within 3 standard deviations from the mean. 
The test result reported in the table shows strong evidence against the 5-day 99% VaR rule: 

the frequencies of exceptions are statistically significantly smaller than 1%. Overall, the analysis of 
exceptions during our sample period indicates that the amount of collateral posted was far larger 

than what would be expected by a 99% confidence VaR rule. 

3.3.2 Counterfactual return estimates (historical simulation) 

In this section, we use historical simulation methods to estimate P&Ls over a longer time period 

than that considered in the previous section. Such a time period covers the financial crisis, the 

most significant market stress since the Great Depression. By doing so, we remedy to the potential 
lack of power of the hypothesis test conducted in the previous section caused by the limited sample 

size, and by the fact that the sample period (2014–2016) considered in the previous section was 

relatively tranquil except for a few notable events (like those described in Section 2.2.6). 
More specifically, the idea of our counterfactual simulation is as follows. For each period, we 

observe the portfolio held by each counterparty, Xn. By looking at the history of (joint) price t 

movements for all the constituents of those portfolios, we can ask what the historical distribution 

of returns of that specific portfolio would have been since 2004 (the first time for which CDS 

data are available in our data set). The resulting distribution of P&L therefore includes the large 

price changes that occurred during the financial crisis, and incorporates the dramatic increase in 

correlations observed in those years. 
Since there are new contracts issued and old contracts expiring every quarter, historical prices 

for a currently traded contract are not always available. To deal with this practical obstacle, we 

consider a historical simulation approach that closely follows that proposed in Duffie et al. (2015). 
We first aggregate net exposures by name (reference entity), and then use the historical 5-year 

CDS spread on those names (for which we have accurate spreads data) to compute counterfactual 
returns for all days for which CDS spreads are available. We review the details of the methodology in 

Appendix A.1. As discussed in Section 2.2, the time series of credit spreads data span dates between 

2004/01/01 and 2016/09/13; this gives us a total of 3,303 days with 5 days ahead observations. We 

will refer to these days as evaluation days.16 

16A day is included in our data analysis only if prices are observed for at least 250 out of the 443 reference entities; 
this filter excludes few days in the early part of the sample for which price information was not uniformly available 
across contracts. 
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Using this approach, for each portfolio held by account n on each day t, we compute all possible 

returns on margins that could have occurred to that portfolio if the spread movements for all 
the CDSs in the portfolio in the following 5 days mimicked the realized spread movements that 

occurred on each of the 5-day windows since 2004. We compute this by evaluating the P&L for each 

account/day/evaluation day combination. We note that the approach of Duffie et al. (2015) we 

follow uses data on 5-year CDS spreads as opposed to the actual maturities, and thus requires an 

approximation that depends on the average duration of the CDS portfolio, d. We choose d = 3 years 

as in Duffie et al. (2015).17 This procedure yields a number of counterfactual return observations 

equal to 517 × 13 × 3, 303 = 22, 199, 463. 
We report the distribution of counterfactual returns on margins in Figure 3. Due to the 

large number of observations clustering around zero, we only display the histogram in the range 

[−50%, +50%] in Figure 3a, and zoom in on the left tail of the histogram in Figure 3b. We see 

that the distribution is sharply peaked, and that most returns on margins lie between ±20%. The 

frequency of returns decreases rapidly as we move away from the mean. 

F igure 3a, F igure 3b, T able 4 

When we consider counterfactual returns, we observe a small number of margin exceptions: the 

portfolios held during 2014-2016 would have sometimes experienced losses larger than the posted 

collateral if prices moved as they did during the financial crisis. 
There are 3,456 observations (out of about 22 million) of returns on margins which are smaller 

than -100%, amounting to 0.016% of our sample. The most negative return amounts to 268% of 
the posted initial margins. 

Table 4 reports both descriptive statistics for the counterfactual returns and results of the 

associated time-series test. Compared to the realized returns, the counterfactual returns have a 

mean closer to zero, a higher standard deviation equal to 8.22%, and fatter tails (the excess kurtosis 

is 31.26). It should not be surprising that counterfactual returns exhibit higher standard deviation 

and kurtosis than those in the period 2014–2016, because they reflect the large spread movements 

experienced during the financial crisis. The distribution tightly clusters around the mean: about 

half of the empirical distribution of returns lies between ±2%. Aggregating over all counterfactual 
returns, we conclude that the empirical 99% Value-at-Risk is approximately 27% of posted margins. 

To test the VaR margining rule, we compare realized losses to initial margins for each observa­
tion. We extend the test of the previous section to include all the historical counterfactual returns 

for each portfolio held in each day by each account. As before, the test compares the empirical 
frequency of margin exceptions with that predicted by the VaR rule. To fully account for potential 
time-series and cross-sectional correlation of the residuals, we double-cluster the standard errors of 
the test statistic at both the day and the account levels (as described in Petersen (2009)). Appendix 

17In Section 4.4 we explore robustness to the choice of d, and also report how closely the counterfactual losses 
mimic the actual losses for the time period when both are observed. The two loss series are positively (though less 
than perfectly) correlated. As expected, the absolute magnitude of the counterfactual returns is higher because it 
includes the financial crisis. 
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A.3 reports the detail of the test statistic and its distribution. 
Strikingly, these exceptions are extremely rare, as shown in Table 4: even including losses as 

large as those observed during the financial crisis, exceptions of the initial margins only occur about 

0.016% of the time, that is, they are about one hundred times less frequent than a 99% VaR rule 

would imply. The results are reported in Table 4, which shows that the hypothesis of a 1% VaR 

rule is strongly rejected. 
We also report the ratio of exceptions separately for each day t ∈ T . For each t, we estimate 

the probability of an exception during the next 5 days using the historical distribution of price 

changes observed since 2004, given the portfolios held by the accounts at t. For each of the 13 

active house accounts, we count the number of counterfactual returns that exceed the amount of 
initial margins required for their portfolio. The number of exceptions are then averaged over the 

13 × 3303 = 42, 939 observations for that day. 
Figure 4 plots the frequency of simulated exceptions over our sample period. The ratio is 

much lower than 1% even at its maximum (around 0.6%). Interestingly, there is significant time 

variation in the ratio: there are periods in which the effective exception confidence levels are high 

(05/2014–01/2015 and 06/2015–09/2015) and periods when they are much lower (02/2015–05/2015 

and 10/2015–05/2016). This indicates the existence of additional factors affecting the fitted VaR 

confidence level, which in turn suggests that there are other elements affecting the collateral re­
quirements beyond simple a VaR rule. 

F igure 4 

3.4 Cross-sectional test of the VaR hypothesis 

In this section we perform the cross-sectional test of the VaR hypothesis outlined in Section 3.2, 
that requires no assumption about the confidence level (α). Recall that the margining rule requires 

that 

P(ΨM,t(Xn
t ) < −IMt(Xn

t )) = α for all n 

that is, the exceedance ratios should be the same across clearing members. We analyze the 

validity of this rule by testing that the empirical frequencies of exceptions across accounts (a 

G−test) are the same, as described in Appendix A.4. 
Table 5 reports the results of the cross-sectional test of the hypothesis that a VaR margining rule 

(at any confidence level α) can explain observed margin levels. For robustness, we perform the test 

for various combinations of CDS duration parameter (following the duration approximation formula 

in Duffie et al. (2015), choosing d = 3 and 5 years) and margin periods of risk (M ∈ {1, 3, 5, 7, 10}
days). The null hypothesis is that if a VaR rule is in place, then it is fairly implemented so that 

the frequencies of exceptions are independent of clearing member identities. 
The p-values reported in Table 5 are essentially zero. There is therefore extremely strong 

evidence against equality of exception probabilities, and thus against the null hypothesis that there 
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exists a VaR rule which can explain observed initial margins for all counterparties. 

T able 5 

We remark that since we pool exception observations across evaluation dates (and the respective 

portfolios) for each account, there is a possibility that autocorrelation of exceptions could reduce the 

power of our test. To adjust for possible autocorrelation, we also perform an autocorrelation-robust 

extension of the G-test, described in detail in Appendix A.4. As before, we test whether a VaR 

margining rule of any confidence level can explain observed margin levels for various combinations 

of CDS duration (d) and margin period of risk (M) assumptions. We report the p-values for the 

various cases in Table A.1. In all but one case the p-values are essentially zero. This indicates 

that, even after taking into consideration potential correlation issues, there is still extremely strong 

evidence against the VaR hypothesis. 

T able A.1 

The Determinants of the Collateral Rule: Portfolio Risk and 

Market Characteristics 

The previous section has shown that a simple V aR rule fails to capture observed collateral re­
quirements in the time series and in the cross-section. This suggests that other variables (both 

at the level of the individual member’s portfolio and marketwide) might enter the collateral rule. 
In this section we perform an extensive investigation of the empirical determinants of collateral 
requirements. 

We consider two groups of potential explanatory variables. Portfolio variables are those that are 

specific to the portfolio that an account holds with the clearinghouse, and are conventionally used 

to measure the risk of positions. These include the Value-at-Risk of the portfolio (studied above), 
expected shortfall, maximum shortfall, aggregate net notional, aggregate short notional, and the 

volatility of the portfolio (see the definitions in Table 6 and in the next section). Market variables 

are those that are determined by market forces, including the clearing members’ CDS spreads, the 

LIBOR-OIS spread, the average clearing member CDS spread, and aggregate volatility as measured 

by VIX. Table 6 summarizes the full list of variables and the notation used in this section. 

T able 6 

This section proceeds as follows. We describe the computations of various portfolios and market 

variables in Section 4.1. In Section 4.2, we perform a panel analysis and relate the observed margin 

requirements for each account n and each day t to various portfolio-specific measures. We also 

use our results to evaluate the initial margins model proposed by Duffie et al. (2015) (henceforth, 
DSV), a reduced-form alternative to VaR with emphasis on the maximum potential loss and the 
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short position of the clearing member. We find that a slight modification of it yields a good 

approximation of the portfolio-level determinant of the collateral rule observed in the CDS market, 
and has a better explanatory power than VaR. 

Section 4.3 incorporates market variables into the panel analysis. The collateral requirements 

imposed by the clearinghouse are not fixed in time but respond to aggregate events. Those events 

include changes in the aggregate conditions of the economy, and more specifically changes in the 

demand for intermediation and clearing. It is thus plausible to expect that market conditions such 

as market volatility or members’ funding costs would affect the equilibrium collateral levels. This 

analysis highlights and quantifies potential channels for general equilibrium effects of margining. 

4.1 Description of portfolio and market variables 

Portfolio variables 

Let Ωk denote the set of CDS contracts with reference name k (that differ by maturity, doc clauses, 
etc...). For each reference k, net notionals are defined by 

Y n Xn:=t,k t,i. 
i∈Ωk 

The aggregate net notional ANn, is then defined as t 

ANn := |Y n 
t k,t|, 

k∈K 

which is the absolute sum of net notionals across reference names. The aggregate short notional, 
ASn, is instead defined as t 

ASn := |Y n 
t k,t|. 

Y n <0
k,t

The aggregate short notional plays an important role because of the highly asymmetric nature 

of CDS payoffs. While the premium leg makes fixed payments, the protection leg (i.e. the short 

side of the CDS position) is exposed to jump-to-default risk. Such an asymmetry induces strong left 

skewness in the payoff function of a short position, which may prompt larger collateral requirements. 
Duffie et al. (2015) propose an initial margin model alternative to VaR that uses only portfolio 

variables, and follows the rule: 

DSV n = MS5(Xn) + 0.02 × AS(Xn), (2)t t t 

where MSM (·) represents the maximum shortfall of the cleared portfolio for a M−day margin 

period of risk, and AS(·) is the aggregate net notional.18 The margin model incorporates both the 

18While Duffie et al. (2015) compute maximum shortfall for a fixed look-back period of 1000 days, we use a longer 
price series starting from the year 2004. As both ours and their time series data cover the years of the crisis, when 
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maximum historical loss, and a 2% “short charge”. It is noteworthy that the DSV model was not 

estimated from data or derived theoretically, but calibrated to anecdotal evidence (which makes its 

empirical success even more remarkable, as we discuss later). 
We also consider a modified version of the DSV model: 

MDSV n = 0.5 × MS5(Xn) + 0.02 × AS(Xn), (3)t t t 

which places a lower weight on maximum shortfall; the weights in this modified version of the DSV 

model are estimated from our sample, as described later. 
We estimate the empirical distribution of the simulated series ψ :=

 
Ψ̂5,t(Xn)

 T 
of 5-day t

t=1 
ahead P&L via the historical simulation approach discussed in Section 3.3.2. Using the empirical 
distribution, we form estimates of volatility (standard deviation), Value-at-Risk, expected shortfall, 
and maximum shortfall of the portfolio. All portfolio variables are in millions of USD to conform 

with the level of initial margins. 

Market variables 

We collect from Bloomberg time series data of the 3-month Overnight Index Swap (OIS) spread, 
the 3-month USD LIBOR rates, clearing member 5-year CDS spreads, and aggregate volatility as 

measured by VIX. 
CDS spreads serve as a measure of funding cost for a clearing member, because higher spreads 

(and, by no-arbitrage relations, bond yields) make it more costly for a member to borrow funds, and 

thus disincentivize the member from executing collateralized trades that tie up funds as collateral. 
The relation between CDS spreads and margins, however, is not straightforward because large CDS 

spreads also imply high default risk, which may contribute to higher margins. 
To disentangle the two effects of funding costs and default risk, we study separately the effects 

of the cross-sectional average clearing member CDS spread, ACDSt, and the deviation of the 

individual member CDS spread from the average, CDSit. The intuition behind this decomposition 

is the following. An increase in average credit risk is naturally expected to induce the clearing house 

to increase collateral requirements from all clearing members, as the clearinghouse is more exposed 

to aggregate default risk. The deviation of the CDS spread of an individual from the average could 

either raise the amount of collateral posted by that member or decrease it. It would raise it if 
the clearinghouse, worried that the increase in default risk of that member is not captured by its 

portfolio characteristics, were to decide to increase the requirement just for that member, even 

though that would violate the rule that collateral requirements should be implemented uniformly 

across accounts. It would decrease it if an increase in funding costs were to induce a decrease in 

demand for collateralized trades. Which force prevails in practice is an empirical question. As we 

discuss below, our results suggest that the funding cost effects dominate once average default risk 

is controlled for. 
the largest losses occurred, the difference between the initial margins computed by the two approaches is negligible. 
We also explore robustness with respect to this choice in Section 4.4. 
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As an alternative to the average credit spread ACDSt, we also consider the LIBOR-OIS spread 

to control for market stress. The LIBOR-OIS spread 

LOISt := LIBORt − OISt. 

is typically viewed as a measure of financial sector stress, capturing mainly the interest rate differ­
ential between uncollateralized and collateralized loans. 

All market variables are recorded in basis points (bps) to conform with market convention (the 

only exception is VIX, which is typically reported in percentage points). 

Summary statistics 

Table 7 displays summary statistics of our key portfolio variables and initial margins, in millions 

of USD. Note that each portfolio variable (like SD, VaR, etc) is computed separately for each time 

t and each member n; in the table, in addition to the pooled mean and standard deviations (which 

we also refer to as dispersions) across all n and t, we also describe other measures of portfolio 

dispersion in the time series and in the cross-section. 
We observe that all measures of dispersion increase in the order of extreme tail risk captured. 

That is, as more weight is put into the tail of the distribution, there is more variability in the 

computed measures both across time and across accounts. The measure with the smallest value is 

the standard deviation (SD), followed in order by Value-at-Risk (V aR), expected shortfall (ES), 
and maximum shortfall (MS). 

Consistent with the results of the previous section, Table 7 shows that V aR is much lower than 

initial margins on average. Interestingly, this is true also for SD, ES, and MS, suggesting that 

these variables, used individually, would not be able to explain the observed level of margins. The 

table also shows that the DSV model matches well not only the level of margins, but also all the 

dispersion measures, except for the dispersion in time averages which is better approximated by 

the modified DSV model (MDSV ). 
Table A.2 in the Appendix reports summary statistics of our key market variables and initial 

margins, in basis points and millions of USD. 

4.2 Margins and Portfolio-specific Risks 

In this section, we perform a panel analysis relating observed margins to portfolio variables. In 

particular, we estimate the following panel regression model with time and account fixed effects: 

n nIMn = αn + ηt + βvv + ut , (4)t t 
v∈P V 

where PV is the set of portfolio variables included in the panel regression. We include fixed effects 

to capture other determinants of initial margins that we do not control for explicitly, but we also run 

our analysis without fixed effects. Notice that in the model specification of Eq. (4), the regression 
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coefficients do not depend on the specific clearing member n, a necessary condition if margining 

rules are implemented uniformly across accounts. 
We start examining the set of portfolio variables to include in the regression. First, we note 

that aggregate net notional (AN) serves primarily as a measure of portfolio size. As portfolio size is 

already accounted for by risk measures such as V aR, MS and AS, all expressed in dollar units, we 

drop this variable from our regression.19 Second, we perform a check for multicollinearity, reported 

in Appendix Table A.3. The table shows that V aR explains more than 96% of the variation of 
both expected shortfall and standard deviation. This strongly points to multicollinearity issues, 
and thus we leave out standard deviation and expected shortfall in our panel model specification. 

Our final set of portfolio variables includes Value-at-Risk, maximum shortfall, aggregate short 

notional, and margins produced by the DSV model given in Eqs. (2) and (3). That is, we estimate 

Eq. (4) using PV = {V aR,MS,AS,DSV,MDSV }, considering both the case with and without 

(time and account) fixed effects, and report the results in Table 8.20 We use double-clustered stan­
dard errors (by time and account) as in Petersen (2009), thus accounting for potential correlation in 

the residuals, both within each account over time, and across accounts within each day. The signs 

of all the coefficients are in line with intuition: because larger values for each of the explanatory 

variables point to a riskier portfolio, all coefficients are expected to be positive. 

T able 8 

Columns (1) and (2) of Table 8 show that Value-at-Risk alone can explain 56% of the variation in 

initial margins, and 83% of the variation if fixed effects are added to the regression. The estimated 

slope coefficient, however, is much higher than unity in either case. In particular, a multiplier of 
at least 250% is needed for the regression fit, again showing that collateral requirements are set 

much more conservatively than what would be implied by the conventional 5-day 99% VaR rule. 
Columns (3) and (4) introduce maximum shortfall (MS) and aggregate short notional (AS) as 

explanatory variables in conjunction with Value-at-Risk. Compared to columns (1) and (2), we see 

that introducing these measures enhances explanatory power by 12%. Moreover, the magnitude 

of the VaR slope coefficients are much closer to unity (and statistically insignificant) once these 

variables are included. Our results therefore show that initial margins depend on risk characteristics 

which cannot be captured only by VaR. 
We drop Value-at-Risk as an explanatory variable in columns (5) and (6), and find that there is 

little loss in explanatory power compared to columns (3) and (4). In particular, maximum shortfall 
is positively correlated with Value-at-Risk, and dropping Value-at-Risk increases the statistical 
significance of the maximum shortfall loading. Interestingly, the aggregate short notional coefficient 

estimate remains very stable and highly significant (in the 1–2% range) for all the models estimated. 
Columns (7)–(12) investigate the usefulness of the Duffie et al. (2015) initial margin model 

19We have conducted a regression analysis including AN as an explanatory variable, and found that, qualitatively, 
our results are largely unaffected.

20The margins produced by the DSV model are included only when DSV and AS are not. 
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(DSV) in explaining empirically observed margins, computed as 

DSV = MS + 0.02 × AS. 

Columns (7) and (8) show that the DSV model captures a significant portion of variation in initial 
margins. The DSV model also outperforms Value-at-Risk in terms of explanatory power (columns 

(1) and (2)). The DSV model seems to overestimate the level of initial margins by 27–60%, most 

likely due to the higher loading on maximum shortfall compared to the optimal mix (estimated 

in columns (5) and (6)). The significance of the DSV slope coefficient persists when we introduce 

Value-at-Risk, and the explanatory power remains roughly the same, showing that Value-at-Risk 

has little explanatory power beyond that already captured by DSV. The overall explanatory power 

improves when we consider a modified version of DSV (columns (11) and (12)) 

MDSV = 0.5 × MS + 0.02 × AS, 

whose coefficients are based on the estimates reported in columns (5) and (6) (so we should expect 

a similar explanatory power). Again, Value-at-Risk still has little explanatory power beyond that 

already captured by our modified DSV model. 
Our empirical results provides support to the margins model of Duffie et al. (2015), where they 

again assume short charge parameters in the 1–2% range. As the main objective of Duffie et al. 
(2015) was to assess relative changes in margins, it was arguably more important for the DSV 

model to capture initial margin variation than the precise level of margins. However, we find that 

their model specification matches empirically observed CDS margins quite well. Compared to the 

optimal mix of maximum shortfall and aggregate short notional (columns (5) and (7)), we see that 

the 2% short charge parameter of DSV is remarkably accurate, and that the loss in explanatory 

power when maximum shortfall is overweighted is small (about 4%). DSV outperforms the simple 

VaR rule alone by 7% in terms of explanatory power (columns (1) and (7)). 
The magnitude of the effects of portfolio variables differs greatly. For example, combining the 

information in Table 7 and Table 8 (column (3)), we see than an increase of one standard deviation 

for Value-at-Risk corresponds to an increase in 0.23 standard deviations in initial margins. All else 

equal, the corresponding increases from maximum shortfall and aggregate short notional are 0.16 

and 0.52, respectively.21 

When we consider the DSV model augmented by VaR (column (9)), a one standard deviation 

increase in the DSV variable corresponds to a 0.72 standard deviation increase in initial margins. 
Hence, DSV better captures the variation in margins compared to Value-at-Risk, whose variation 

associates with only a 0.08 standard deviation increase in initial margins. Comparing the baseline 

DSV model and the modified DSV model (columns (9) and (11)), we see that the modified DSV 

slightly outperforms the baseline version. Overall, while DSV performs well in capturing most of 
the dispersion measures in Table 7, the modified DSV captures better the dispersion in accounts 

21This model is computed using Column 3 in Table 8, i.e. it is the full model without fixed effects. 
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average margin. Our results thus imply that this dispersion has significant time variation, and by 

capturing this variation well the modified DSV explains margins better than the baseline DSV. 
While our proposed measures capture significant variations in initial margins, the explanatory 

power is far from perfect. This implies that there are other contributing factors to clearinghouse 

decisions, which are not captured by standard portfolio risk measures.22 

4.3 Funding Cost, Collateral Rates and other Market Variables 

In this section we incorporate market variables into our panel analysis and assess their ability 

to explain margin requirements. The theoretical model proposed by Capponi and Cheng (2017) 

shows that, regardless of the risk characteristics of the cleared portfolio, the clearinghouse has the 

incentive to increase margins when (i) the average default risk is high, to protect itself from larger 

expected default losses, and (ii) funding costs are low, as the deterrent effect of margin costs is 

weak. The included market variables are chosen to capture variations in margins that are due to 

changes in default risk and funding cost. 
We consider the following panel regression model: 

n n nIMn = αn + ηt βvv + βvv + ut , (5)t t t 
v∈P V v∈MV 

where PV = {V aR,MS,AS,DSV,MDSV } and MV = {LOIS,CDS,ACDS, V IX} are, respec­
tively, the portfolio and market variables included in the panel regression. Because market variables 

are often not account specific (e.g. LIBOR-OIS spreads), time fixed effects cannot be included in 

the regression. Thus, in this section we only consider time fixed effects when non-account-specific 

variables are excluded. 

T able 9 

We estimate the model in Eq. (5) using least squares regressions, choosing initial margins as 

the dependent variable and portfolio and market variables as explanatory variables. The results 

with double-clustered (by account and time) standard errors are reported in Table 9. 
First, we observe that the inclusion of market variables does not change our previous results, 

obtained by including only portfolio variables. The modified DSV model (columns (1)–(4)) and 

aggregate short notional (columns (5)–(6)) appear to be strong drivers of initial margins, and 

Value-at-Risk shows little statistical significance when these two measures are controlled for. 
Columns (1) and (2) report the results when the CDS spreads, average CDS spreads, and the 

VIX index are included, and Value-at-Risk and modified DSV margins are controlled for. There is a 

non-negligible increase in explanatory power compared to models including only portfolio variables 

(Table 8), showing again the usefulness of market variables in explaining initial margins. Comparing 

22We have performed the same exercise for different VaR confidence levels. We find that additional multicollinearity 
problems are introduced as the confidence level approaches one, because VaR then converges to maximum expected 
shortfall. Our results, however, remain broadly the same. 
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Tables 8 and 9, however, we notice that a significant fraction of explanatory power is attributed 

to portfolio variables alone. Thus, while market variables do seem to influence margin levels, their 

effects seem to be smaller than that of portfolio variables. Interestingly, although statistically 

insignificant, our measure of funding cost (individual CDS spreads) is negatively related to initial 
margins, once the average CDS spread is controlled for. 

Columns (3) and (4) report our results when we replace the average CDS spread with the 

LIBOR-OIS spread. There is almost no change in explanatory power and the loadings on the 

portfolio variables. The change in loadings for CDS spreads and the VIX is small, and the loadings 

on CDS spreads remain negative but insignificant. Columns (5) and (6) report the results when 

maximum shortfall and aggregate short notional are used to replace the modified DSV margins. 
The increase in explanatory power is small when compared to the results in columns (1) and (2). 
However, the comparison demonstrates the usefulness of the individual components of the DSV 

model in explaining observed margins. The estimated coefficient for aggregate short notional is 

significant and in the range of 1-2%, again showing the robustness of our previous results in Table 

8. Maximum shortfall also plays a significant role when account fixed effects are not controlled for. 
We find that measures of market stress or default risk, which include the average CDS spread, 

the VIX, and the LOIS spread, all play a significant role in explaining margins (columns (1), (2), 
(5), and (6)). As increases in each of these variables indicate a high probability of default for the 

members, and especially joint default, the clearinghouse asks for more margins even after controlling 

for portfolio risk. 
The magnitude of these effects is substantial. In our estimates, a one-point increase in the 

VIX increases required margins by $4.6 million; a 1-basis-point increase in the average CDS spread 

increases margins by $4.5 million, and a 1-basis-point increase in the LIBOR-OIS spread by $12 

million. Given that during crisis episodes movements of the VIX of 50 points or changes in LIBOR 

and CDS spreads of hundreds of basis points are possible, these estimates imply very large potential 
effects on prices and systemic stability through the collateral channel.23 

The effect of funding costs (individual CDS spreads) is smaller and insignificant, but nonetheless 

is consistently found to be negative in all our regressions, in line with the predictions of Capponi and 

Cheng (2017). The low statistical significance is likely due to the fact that variation in individual 
clearing members CDS spreads (orthogonal to the average CDS spread) in our sample period is 

small. 
Because of the granularity of our data set, we are able to separate the two counteracting 

effects of increased CDS spreads, namely, the increased default risk and increased funding costs. 
These results have important implications for funding liquidity: margin spirals (Brunnermeier and 

Pedersen (2009)) may be dampened or reinforced by collateral rules. We find direct evidence for 

the reinforcement channel through the average CDS spread, which has a positive and significant 

coefficient (columns (1), (2), (5), and (6) in Table 9). Our results show that if a market shock 

23Of course, these estimates are obtained in a relatively calm period, so it is hard to extrapolate the estimates to 
times of crisis; however, they give a sense of the magnitude of these effects. 
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increases the aggregate default risk in the market (ACDS increases), the required margins for 

members increase, holding everything else constant. Brunnermeier and Pedersen (2009) argue 

that this can potentially lead to destabilizing margins spirals if the margin-setting financier, the 

clearinghouse in our setting, is unsure whether these market shocks are due to fundamental news 

or to liquidity shocks. In the language of Brunnermeier and Pedersen (2009), if the clearinghouse 

behaves like an uninformed financier, possibly over-estimating fundamental volatility through the 

average CDS spread and over-tightening margin constraints, then it can set off margin spirals. 
However, different from them, our results imply that such a market shock needs to affect all 
members’ spreads (i.e. a general increase in credit risk) and not only an individual member’s CDS 

spread, since we control for individual member CDS spreads. This is consistent with the fact that 

the clearinghouse is most worried about the joint default risk of several members as opposed to the 

individual default risk of a single member. 

4.4 Robustness 

We discuss several robustness checks, and report additional details in Appendix A.5. The historical 
simulation method presented in Section 3.3.2 uses the so-called DV01 approximation as in Duffie 

et al. (2015). This allows us to compute counterfactual portfolio returns even for time periods not 

covered by our main sample period 2014-2016. In the Appendix, we compare the approximation 

method with the actual portfolio realizations for the two years of our sample, where we observe 

both. We find a relatively high (though not perfect) correlation between the two – just above 50%, 
indicating that the counterfactual losses do serve as a reasonable approximation of the realized 

losses. 
In addition, the DV01 approximation used in Section 3.3.2 depends on the calibration of the 

average duration of the portfolio d. Duffie et al. (2015) choose d = 3 years; we show in the Appendix 

that all our results continue to hold under the more conservative assumption of d = 5 years. 
Finally, two of the portfolio variables (Value-at-Risk and maximum shortfall) used in our anal­

ysis were based on P&L generated from our entire sample of credit spreads. Because our dataset 

covered the financial crisis, the risk measures captured extreme movements and may thus be viewed 

as overly conservative for estimating portfolio losses. In the Appendix, we consider using only the 

last 1000 days (approximately 4 years) of credit spreads data to generate P&L, as in Duffie et al. 
(2015). Our analysis in the appendix shows that the results remain qualitatively similar to those 

reported in Tables 8 and 9. 

5 Discussion and Concluding Remarks 

We study the empirical determinants of collateral requirements in a large market in which counter-
party risk plays an important role – the cleared CDS market. Our analysis exploits the availability 

of a unique dataset on clearing members’ portfolio exposures and associated margin levels. Margins 

in this market are set at the portfolio level rather than at the individual security level; this allows 
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us to study how risk measures like VaR and other portfolio characteristics affect margins. We also 

study how market variables – in addition to portfolio variables – affect collateral requirements, 
highlighting the implications of our findings for models of the collateral feedback channel. 

A large theoretical literature has explored how collateral rules can amplify fundamental shocks, 
by requiring margin payments – or forcing deleveraging – after bad shocks occur. Papers in this 

literature typically assume that margins are set according to a VaR rule. In the first part of 
our paper, we directly test this hypothesis and show that it is violated in several ways. First, it 

appears that collateral is set much more conservatively than what would be implied by a standard 

(99%) VaR rule – a rule that clearinghouses themselves state they use. Therefore, VaR cannot 

explain the average levels of collateral. Note that we calibrate our VaR taking into account the 

entire distribution of historical CDS returns since 2004 – therefore including the financial crisis in 

our sample. Yet, margins are set much more conservatively than what VaR predicts. Second, if 
collateral requirements were determined according to VaR, they should be implemented equally 

across counterparties: we show that this is not the case empirically, as there is large heterogeneity 

in the amounts of collateral posted across members, in excess of what VaR would predict. 
We find that other market and portfolio variables dominate VaR in explaining the time-series 

and cross-sectional variation in margins. In particular, maximum shortfall (the largest potential 
portfolio loss) and aggregate short notional (the notional amount held by a member in short CDS 

positions, those most exposed to jump-to-default risk) dominate VaR in explaining the panel vari­
ation of required collateral. These two variables, previously employed in a reduced-form model of 
collateral proposed by Duffie et al. (2015), account alone for almost 70% of the entire variation in 

margins. They are able to match the average observed levels of collateral, considering that max­
imum shortfall is a much more extreme loss than even the 1st percentile on which VaR is based. 
These variables also capture sudden changes in risk exposures, because the aggregate short notional 
does not depend on a conditional distribution which needs to be estimated from historical data, 
but is instead directly observed. Interestingly, both variables (but especially the short notional) are 

independent or at least less sensitive to the exact specification of the loss distribution, compared to 

other risk-based measures. Hence, they represent a more robust choice for a collateral requirement 

in the face of model uncertainty for the distribution of losses. 
Our analysis finds that shocks to market variables such as aggregate default risk (captured by 

the average CDS spreads of members) and aggregate market risk (captured by the VIX) increase 

the total amount of required collateral, even after controlling for portfolio-level risks. In contrast, 
an increase in the individual member’s funding costs induces a reduction of the posted collateral, 
consistent with the predictions of Capponi and Cheng (2017). 

Our findings have several implications for theoretical models of the collateral feedback channel. 
First, the fact that maximum shortfall and short charge explain margins better than VaR indicates 

that the clearinghouse is worried about more extreme losses than what the VaR captures. This 

induces a nonlinearity in the collateral rule: collateral levels will respond little to small changes 

in risks (like an increase in the variance of the portfolio), but will spike if the probability of an 
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extreme event increases or the worst-case-scenario worsens. This nonlinearity can potentially play 

an important role in general equilibrium models, amplifying the largest shocks but dampening 

moderate-sized shocks. 
Second, our results are consistent with some (but not all) of the theoretical literature on gen­

eral collateral equilibria (Geanakoplos (1997), Geanakoplos (2010), Fostel and Geanakoplos (2014), 
Fostel and Geanakoplos (2015)). These works have shown that VaR rules do not arise in equilib­
rium: instead, the amount of collateral that emerges endogenously should cover the losses in the 

worst possible state, precisely like a maximum shortfall rule. Our findings therefore provide di­
rect empirical evidence in favor of the main implications of those theoretical models of endogenous 

collateral.24 

Third, collateral requirements are directly affected by market conditions: increases in aggregate 

risks directly induce an increase in collateral requirements, holding the portfolios fixed. Our empir­
ical analysis therefore documents the existence of two channels for the amplification of fundamental 
shocks (studied, for example, in Brunnermeier and Pedersen (2009)): at the portfolio level, where 

an increase in perceived tail risk following a shock may affect the member’s margin requirement; 
and at the macro level, where an increase in aggregate risk can increase the collateral requirements 

of all members. 
Taken together, these empirical findings both validate specific theories of collateral equilibria 

(like the focus on maximal loss and resulting nonlinearity of the margin function) and provide 

guidance for building empirically grounded models of the collateral feedback channel. 

24The analysis in these works was originally developed in a binomial economy, and the most recent papers have 
explored the conditions under which it extends to richer economies. In this paper, we provide empirical evidence that 
indeed, in a rich real environment, maximum shortfall appears to be an important driver of collateral rules. 

33
 



References 

Adrian, T. and Boyarchenko, N. (2012). Intermediary leverage cycles and financial stability. Becker 

Friedman Institute for Research in Economics Working Paper, (2012-010). 

Berkowitz, J. and O’Brien, J. (2002). How accurate are the value-at-risk models at commercial 
banks? Journal of Finance, 57:1093–1112. 

Biais, B., Heider, F., and Hoerova, M. (2016). Risk-sharing or risk-taking? Counterparty risk, 
incentives, and margins. The Journal of Finance, 71(4):1669–1698. 

Booth, G. G., Broussard, J. P., Martikainen, T., and Puttonen, V. (1997). Prudent margin levels 

in the finnish stock index futures market. Management Science, 43(8):1177–1188. 

Broussard, J. P. (2001). Extreme-value and margin setting with and without price limits. The 

Quarterly Review of Economics and Finance, 41(3):365–385. 

Brunnermeier, M. K. and Pedersen, L. H. (2009). Market liquidity and funding liquidity. Review 

of Financial studies, 22(6):2201–2238. 

Brunnermeier, M. K. and Sannikov, Y. (2014). A macroeconomic model with a financial sector. 
The American Economic Review, 104(2):379–421. 

Capponi, A. and Cheng, W. A. (2017). Clearinghouse margin requirements. Available at SSRN: 
http://ssrn.com/abstract=2669304. 

Chabakauri, G. (2013). Dynamic equilibrium with two stocks, heterogeneous investors, and portfolio 

constraints. Review of financial studies, 26(12):3104–3141. 

CME Group (2010). CME SPAN: Standard portfolio analysis of risk. Available online at http: 

//www.cmegroup.com/clearing/files/span-methodology.pdf. 

Coen-Pirani, D. (2005). Margin requirements and equilibrium asset prices. Journal of Monetary 

Economics, 52(2):449–475. 

Cruz Lopez, J., Hurlin, C., Harris, J. H., and Pérignon, C. (2017). Comargin. Journal of Financial 
and Quantitative Analysis, Forthcoming. 

Duffie, D., Scheicher, M., and Vuillemey, G. (2015). Central clearing and collateral demand. Journal 
of Financial Economics, 116(2):237–256. 

Fenn, G. W. and Kupiec, P. (1993). Prudential margin policy in a futures-style settlement system. 
Journal of Futures Markets, 13(4):389–408. 

Figlewski, S. (1984). Margins and market integrity: Margin setting for stock index futures and 

options. Journal of Futures Markets, 4(3):385–416. 

34
 

http://www.cmegroup.com/clearing/files/span-methodology.pdf
http://www.cmegroup.com/clearing/files/span-methodology.pdf
http://ssrn.com/abstract=2669304


Fishe, R. P. and Goldberg, L. G. (1986). The effects of margins on trading in futures markets. 
Journal of Futures Markets, 6(2):261–271. 

Fostel, A. and Geanakoplos, J. (2014). Endogenous collateral constraints and the leverage cycle. 
Annual Review of Economics, 6(1):771–799. 

Fostel, A. and Geanakoplos, J. (2015). Leverage and default in binomial economies: a complete 

characterization. Econometrica, 83(6):2191–2229. 

Gay, G. D., Hunter, W. C., and Kolb, R. W. (1986). A comparative analysis of futures contract 

margins. Journal of Futures Markets, 6(2):307–324. 

Geanakoplos, J. (1997). Promises promises. In Arthur, W. B., Durlauf, S. N., and A., L. D., editors, 
The Economy as an Evolving Complex System II, pages 285–320. Addison Wesley Longman. 

Geanakoplos, J. (2003). Liquidity, default, and crashes: Endogenous contracts in general equilib­
rium. In Dewatripont, M., Hansen, L., and Turnovsky, S., editors, Advances in Economics and 

Econometrics: Theory and Applications, Eighth World Conference, volume II, pages 170–205. 
Cambridge University Press. 

Geanakoplos, J. (2010). The leverage cycle. NBER macroeconomics annual, 24(1):1–66. 

Geanakoplos, J. and Zame, W. R. (2014). Collateral equilibrium, I: a basic framework. Economic 

Theory, 56(3):443–492. 

Glasserman, P., Moallemi, C. C., and Yuan, K. (2016). Hidden illiquidity with multiple central 
counterparties. Operations Research, 64(5):1143–1158. 

Goldberg, L. G. and Hachey, G. A. (1992). Price volatility and margin requirements in foreign 

exchange futures markets. Journal of International Money and Finance, 11(4):328–339. 

Hardouvelis, G. A. and Peristiani, S. (1992). Margin requirements, speculative trading, and stock 

price fluctuations: The case of Japan. The Quarterly Journal of Economics, pages 1333–1370. 

He, Z. and Krishnamurthy, A. (2013). Intermediary asset pricing. The American Economic Review, 
103(2):732–770. 

Hedegaard, E. (2014). Causes and consequences of margin levels in futures markets. Arizona State 

University Working Paper. 

Heller, D. and Vause, N. (2012). Collateral requirements for mandatory clearing of over-the-counter 

derivatives. BIS Working Paper. 

Hoey, J. (2012). The two-way likelihood ratio (g) test and comparison to two-way chi squared test. 
arXiv preprint arXiv:1206.4881. 

35
 



Holmström, B. and Tirole, J. (1997). Financial intermediation, loanable funds, and the real sector. 
The Quarterly Journal of Economics, 112(3):663–691. 

Huang, W. and Menkveld, A. J. (2016). Systemic risk in real time: A risk dashboard for central 
clearing parties (CCPs). VU University Amsterdam Working Paper. 

Hull, J. (2012). Risk Management and Financial Institutions, volume 733. John Wiley & Sons. 

ICE Clear US (2015). Span margin system. Available online at 

https://www.theice.com/publicdocs/clear us/SPAN Explanation.pdf. 

Ivanov, S. and Underwood, L. (2011). CDS Clearing at ICE: A Unique Methodology, pages 31–33. 
Futures Industry Magazine. 

Koeppl, T., Monnet, C., and Temzelides, T. (2012). Optimal clearing arrangements for financial 
trades. Journal of Financial Economics, 103(1):189–203. 

Longin, F. M. et al. (1999). Optimal margin level in futures markets: extreme price movements. 
Journal of Futures Markets, 19(2):127–152. 

Menkveld, A. J. (2017). Crowded trades: an overlooked systemic risk for central clearing counter-
parties. Review of Asset Pricing Studies, Forthcoming. 

Petersen, M. A. (2009). Estimating standard errors in finance panel data sets: Comparing ap­
proaches. The Review of Financial Studies, 22(1):435–480. 

Rytchkov, O. (2014). Asset pricing with dynamic margin constraints. The Journal of Finance, 
69(1):405–452. 

Sidanius, C. and Zikes, F. (2012). OTC derivatives reform and collateral demand impact. Financial 
Stability Paper, (18). 

36
 

https://www.theice.com/publicdocs/clear


Figure 1: Histogram of margin/notional ratio observations.
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Note: For each active house account/day combination, we compute a margin to notional ratio by dividing recorded
initial margins with aggregate net notional. We arrive at the aggregate net notional by computing the net notional
for each reference name and then summing the absolute net notionals across names. The figure reports the 
histogram of margin/notional ratio across all 6,721 account/day observations. 

Figure 2: Histogram of realized return on margins for cleared portfolios. 
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Note: We compute the realized 5-day ahead returns on margins as the 5-day ahead P &L divided by posted
margins. We compute this for each account/day and obtain 6,656 observations. The figure plots the histogram of
the return on margins. 
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Figure 3: Histogram for historically simulated return on margins (left), with zoom in on left tail 
(right). 
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Note: The figure shows the histogram of simulated returns on margins. Due to the large number of observations
clustering around zero, we only display observations between ±50% in Figure 3a, and report the left tail of the 
histogram in Figure 3b. We use the DV01 formula to approximate the 5-day ahead P &L with the product of net
exposures to a reference name and the change in 5-year credit spreads for rolling 5-day windows from 2004/01/01 
and 2016/09/13, adjusted for an average duration of d = 3. We compute this for each account/day/historical 5-day 
window and obtain 22,199,463 observations. 

Figure 4: Ratio of exceptions over time. 
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Note: The figure reports the average ratio of exceptions actual portfolios held in each day, using the historical
distribution of returns since 2004. For any fixed day within our sample period, we count for each of the 13 active
house accounts the number of counterfactual returns that exceed the amount of initial margins required for their
portfolio, using historical CDS spreads to simulate the counterfactual return of that portfolio. The number of 
exceptions are then averaged over the 13 × 3303 = 42, 939 observations for that day. 
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Table 1: Descriptive statistics for different account categories.
 

Active House Customer Auxiliary House 

Number of accounts 13 13 12(18)† 

Number of contracts 4,042.2 73.4 99.1 

Number of names 239.3 32.6 23.8 

Gross notional (billions $) 168.6 45.5 8.3 

Initial margins (millions $) 657.9 614.1 57.5 

Note: The table reports the pooled averages of key variables within our data set depending on account type over
our sample period. The number of contracts/names for each account is the number of contracts/names in which
the account has a non-zero position. Gross notional is computed by summing the absolute notional exposure for
all contracts for each account. Margins are computed by summing together the USD requirement with the Euro
requirement after accounting for the historical exchange rates. 

†Six auxiliary house had zero margins throughout, indicating no trading activity at all. We excluded these accounts
when calculating auxiliary house account descriptive statistics. 

Table 2: Time series summary statistics of initial margins over time. 

Initial margins (billions $) Aggregate Active House Customer 

Time average 17.1 8.6 7.9 

Median 16.4 8.7 7.6 

Range [14.8, 22.4] [7.1, 10.4] [6.2, 11.1] 
Standard deviation 1.7 0.6 1.2 

Posted Collateral (billions $) 

Time average 17.6 8.7 8.1 

Median 17.1 8.9 7.7 

Range [9.4, 23.0] [4.8, 10.4] [4.0, 11.5] 
Standard deviation 1.7 0.7 1.3 

Note: The table reports the aggregate initial margin requirement and posted collateral in USD for each point in
time in our sample for all accounts, all customer accounts, and all active house accounts. 
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Table 3: Descriptive statistics for (realized) return on margins and test results for the 5-day 99% 
VaR rule. 

5-day-ahead return on margins (rm) 

Observations 6,656 

Mean(%) -0.06 

S.D.(%) 5.22 

Excess kurtosis 4.19 

Range(%) [-27.5, 30.04] 
Interquartile Range (Q3-Q1)(%) [-2.06, 2.08] 
Empirical V aR5,0.05(%) -8.86 

Empirical V aR5,0.01(%) -16.06 

Empirical V aR5,0.001(%) -24.37 

|rm| ≤ 0.15 (%) 97.99 

Test results for H0 : P(rm < −100%) = 1% 

Initial Margin Exceptions 0 

Ratio (Z �) 0 

S.E.† 3.7 × 10−3 

t-stat -2.73 

Note: We report descriptive statistics for the realized 5-day ahead returns on margins, defined as the 5-day ahead
realized P &L divided by margin requirements. We observe no exceptions within our sample period. We compute
standard errors using binomial probabilities, and further assume that exception events are perfectly correlated when
underlying losses overlap for robustness against autocorrelation. We also assume exception events are uncorrelated 
across accounts. 
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Table 4: Descriptive statistics for historically simulated return on margins and test of the 5-day 
99% VaR rule 

5-day-ahead return on margins (rm) d = 3 

Observations 22,199,463 

Mean(%) 0.01 

S.D.(%) 8.64 

Kurtosis 31.26 

Range(%) [-268.00, 162.40] 
Interquartile Range (Q3-Q1)(%) [-1.88, 1.90] 
Empirical V aR5,0.05(%) -11.08 

Empirical V aR5,0.01(%) -26.96 

Empirical V aR5,0.001(%) -60.89 

|rm| ≤ 0.26 (%) 97.80 

Test results for H0 : P(rm < −100%) = 1% 

Initial Margin Exceptions 3,456 

Ratio (Z �) 1.56 × 10−4 

S.E.† 8.90 × 10−5 

t-stat -110.63 

Note: We report descriptive statistics for the historically simulated 5-day ahead returns on margins. We use the
DV01 formula to approximate the 5-day ahead P &L with the product of net exposures to a reference name and
the change in 5-year credit spreads for rolling 5-day windows from 2004/01/01 and 2016/09/13, adjusted for an 
average duration of d = 3. The estimated return on margins are then defined as the simulated 5-day ahead P &L 
divided by margin requirements. To test the VaR margining rule, we compare counterfactual returns to initial
margins for each observation. We compute two-way clustered standard errors, clustering both at the account and
time level. 
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Table 5: Test results for M -day VaR rules.
 

p-values Effective Duration (Years): 

M : MPoR in days 3 5 

1 < 10−4 < 10−4 

3 < 10−4 < 10−4 

5 < 10−4 < 10−4 

7 < 10−4 < 10−4 

10 < 10−4 < 10−4 

df = 12 

Note: The table reports the results of the test for whether a VaR margining rule of any confidence level can explain
observed margin levels for various combinations of CDS duration (d) and margin period of risk (M) assumptions.
The null hypothesis is that if a VaR rule is implemented, it is fairly implemented so that the frequencies of exception
are independent of clearing member identities. We report the p-values for various combinations of CDS duration 
(d) and margin period of risk (M). 
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Table 6: Portfolio and market variables.
 

Notation Units Definition 

ψ 

IM 

Y 

millions $ 

millions $ 

millions $ 

Empirical 5-day distribution of profit and losses for a portfolio 

Observed initial margins posted for a portfolio 

Net notional aggregated over reference names for a portfolio 

Portfolio Variables 

SD 

V aR 

ES 

M S 

AN 

AS 

DSV 

M DSV 

millions $ 

millions $ 

millions $ 

millions $ 

millions $ 

millions $ 

millions $ 

millions $ 

Sample standard deviation of ψ 

1 percent quantile of ψ 

Average of profit and losses less than or equal to V aR 

Minimum of ψ 

Aggregate net notional (by reference entity) of portfolio 

Aggregate short notional (by reference entity) of portfolio 

Initial margin estimate used by Duffie et al. (2015), equal to MS + 0.02 × AS 

Adjusted initial margin from DSV , equal to 0.5 × MS + 0.02 × AS 

Market Variables 

OIS 

LOIS 

CDS 

ACDS 

V IX 

bps 

bps 

bps 

bps 

bps 

End of day 3-month Overnight Index Swap spreads 

End of day 3 month USD LIBOR-OIS spreads 

End of day market quote for clearing member specific 5-year CDS spread 

Average end of day clearing member 5-year CDS spread 

End of day CBOE Volatility Index 

Note: This table displays the key variables and notation we use in our regression analyses. Portfolio variables
are those that are specific to the portfolio that an account holds with the clearinghouse, and are conventionally
used to measure the risk of positions. Market variables are those that are determined by market forces. Portfolio
variables estimated from the empirical distribution via the historical simulation method outlined in Section 3.3.2 
include Value-at-Risk, expected shortfall, maximum shortfall, and standard deviation. Portfolio variables estimated
directly from positions include aggregate net notional and aggregate short notional. We record portfolio variables
in millions USD. Market variables include the Overnight Index Swap (OIS) spread, the LIBOR-OIS spread, clearing
member CDS spreads, the average clearing member CDS spread, and the aggregate volatility as measured by VIX.
We record market variables in basis points. 
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Table 7: Initial margins and portfolio variables summary statistics
 

Portfolio variables, in millions $ 

Summary Statistic In. Margins (IMn,t) Portfolio SD (SDn,t) VaR (V aRn,t) Exp. Shortfall (ESn,t) Max Shortfall (MSn,t) 

Pooled mean (over all n and t): µ(xn,t) 654.5 43.1 128.6 183.2 363.3 

Std. deviation (over all n and t): σ(xn,t) 367.0 28.4 83.6 114.0 243.7 

Time-series variation of cross-sectional averages: σ(x̄t) 48.7 4.3 11.2 18.9 57.7 

Mean cross-sectional dispersion: µ(σt(xn,t)) 370.7 28.2 83.5 113.5 236.0 

Cross-sectional dispersion of time-series averages: σ(x̄n) 325.1 24.1 71.6 95.8 187.9 

Mean time-series dispersion: µ(σn(xn,t)) 162.4 13.4 39.5 55.7 134.5 

Portfolio variables, in millions $ 

Summary Statistic Aggr. Notional (ANn,t) Aggr. Short Notional (ASn,t) Duffie et al. (DSVn,t) Modified DSV (MDSVn,t) 

Pooled mean (over all n and t): µ(xn,t) 25, 906.7 12, 392.5 611.1 429.5 

Std. deviation (over all n and t): σ(xn,t) 14, 215.1 9, 092.9 370.4 265.1 

Time-series variation of cross-sectional averages: σ(x̄t) 1, 684.2 1, 041.2 76.1 47.7 

Mean cross-sectional dispersion: µ(σt(xn,t)) 14, 656.9 9, 186.6 364.7 263.4 

Cross-sectional dispersion of time-series averages: σ(x̄n) 13, 690.0 8, 262.7 315.0 233.4 

Mean time-series dispersion: µ(σn(xn,t)) 4, 683.9 3, 735.7 170.7 110.8 

Note: Table 7 displays summary statistics of our key portfolio variables and initial margins, in millions of USD.
Definitions of portfolio variables are reported in Table 6. In addition to the pooled mean and standard deviations
(dispersions), we report panel statistics that describe properties of panel variables both across accounts and time.
In particular, for panel data xn,t, we define 

N T N T
1 1 2 1 2 1 

x̄t := xn,t, x̄n := xn,t, σt (x) := (xn,t − x̄t)2 , σn(x) := (xn,t − x̄n)2 . 
N T N − 1 T − 1 

n=1 t=1 n=1 t=1 

Above, we refer to σ(x̄t) as the time-series variation of cross-sectional averages, σ̄t(xn,t) as the mean cross-sectional 
dispersion, σ(x̄n) as the cross-sectional dispersion of time-series averages, and σ̄n(xn,t) as the mean time-series 
dispersion. 
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Table 8: Regression results for explaining initial margins with portfolio variables
 

Dependent variable: Initial margins (IM) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Value-at-Risk (V aR) 3.292∗∗∗ 

(0.593) 
2.537∗∗∗ 1.002 

(0.588) (0.986) 
1.361 

(0.932) 
0.363 

(1.158) 
0.756 

(1.056) 
0.370 

(1.000) 
0.709 

(1.154) 

Maximum shortfall (MS) 0.254 
(0.191) 

0.125 
(0.240) 

0.493∗∗∗ 

(0.167) 
0.443∗∗ 

(0.213) 

Aggregate short notional (AS) 0.021∗∗∗ 

(0.006) 
0.017∗∗ 

(0.008) 
0.024∗∗∗ 

(0.004) 
0.021∗∗∗ 

(0.007) 

Duffie et al. model (DSV ) 0.787∗∗∗ 

(0.132) 
0.622∗∗∗ 

(0.109) 
0.711∗∗∗ 

(0.259) 
0.468∗∗∗ 

(0.170) 

Modified DSV model (MDSV ) 1.029∗∗∗ 0.769∗∗ 

(0.296) (0.327) 

Observations 6,721 6,721 6,721 6,721 6,721 6,721 6,721 6,721 6,721 6,721 6,721 6,721 
Adjusted R2 0.562 0.830 0.680 0.862 0.673 0.855 0.631 0.844 0.632 0.846 0.672 0.857 
Account FE N Y N Y N Y N Y N Y N Y 
Time FE N Y N Y N Y N Y N Y N Y 

Note: ∗ p<0.1; ∗∗ p<0.05; ∗∗∗ p<0.01 

Note: We perform least squares regressions using initial margins as the dependent variable and portfolio variables
as explanatory variables. Two-way clustered (by time and account) standard errors are reported in parentheses
and used for the significance tests. We consider both the case with and without (time and account) fixed effects. 



Table 9: Regression results for explaining initial margins with portfolio and market variables
 

Dependent variable: Initial margins (IM) 

(1) (2) (3) (4) (5) (6) 

Value-at-Risk (V aR) 0.340 
(0.911) 

0.781 
(1.262) 

0.336 
(0.914) 

0.836 
(1.262) 

0.970 
(0.831) 

1.444 
(1.007) 

Modified DSV Model (MDSV ) 1.075∗∗∗ 

(0.269) 
0.641∗ 

(0.334) 
1.063∗∗∗ 

(0.270) 
0.655∗ 

(0.335) 

Maximum Shortfall (MS) 0.279∗ 

(0.154) 
0.069 

(0.232) 

Aggregate Short Notional (AS) 0.022∗∗∗ 

(0.005) 
0.015∗ 

(0.008) 

CBOE volatility index (V IX) 0.046∗∗ 0.046∗∗∗ 0.068∗∗∗ 0.063∗∗∗ 0.044∗∗ 0.044∗∗ 

(0.019) (0.017) (0.017) (0.020) (0.019) (0.018) 

Member CDS spread (CDS) −1.643 −1.660 −0.770 −0.480 −2.042 −1.284 
(1.566) (1.246) (1.166) (0.717) (1.659) (1.228) 

Average CDS spread (ACDS) 4.591∗∗∗ 4.024∗∗ 4.764∗∗∗ 3.520∗∗ 

(1.489) (1.827) (1.449) (1.669) 

LIBOR-OIS spread (LOIS) 12.011∗∗∗ 9.758∗∗ 

(3.301) (3.930) 

Observations 
Adjusted R2 

6,721 
0.700 

6,721 
0.856 

6,721 
0.700 

6,721 
0.854 

6,721 
0.707 

6,721 
0.860 

Account FE N Y N Y N Y 
Time FE N N N N N N 

Note: ∗ p<0.1; ∗∗ p<0.05; ∗∗∗ p<0.01 

Note: We perform least squares regressions using initial margins as the dependent variable and portfolio and market
variables as explanatory variables. Two-way clustered (by time and account) standard errors in parentheses are
reported and used for the significance tests. We consider both the case of with and without fixed effects. Because
market variables are often dependent only on time, we consider only account fixed effects when such variables are
introduced. 
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A Appendix 

A.1 Procedure to compute counterfactual Returns 

Following Duffie et al. (2015), we group together all I contracts written on the K underlying 

reference entities, and denote the net position in that reference entity by Yk. Precisely, let Ωk 

denote the collection of contracts referencing name k, then 

Y n Xn:=t,k t,i. 
i∈Ωk 

For each reference entity, therefore, Yk indicates the net exposure to reference entity k, ag­
gregating together the CDS contracts on that reference entity across maturities, seniority level, 
and doc clause. We then collect historical on-the-run 5-year credit spread series for each reference 

entity, St ∈ RK , and estimate historical losses via the DV01 formula: 

(Xn) ≈ d × Yn · (SuΨ5,u t t − Su+5), 

where d is the effective duration of the positions. We use d = 3 as in Duffie et al. (2015), meaning 

that the average duration of CDS positions is 3 years (corresponding to the median maturity of the 

CDS market). Section 4.4 performs a robustness check with respect to the choice of d. 

A.2 Time-series test of the V aR rule using realized returns 

We consider the Z statistic: 

T N1 
Z := I{ΨM,t(Xn) < −IMt(Xt

n)},
NT t 

t=1 n=1 

where I{·} is the indicator function. The indicator takes value 1 when realized M−day losses exceed 

the initial margin requirement; this is typically referred to as an exception (or exceedance). The 

statistic Z is the empirical frequency at which exceptions occur, averaged over time and across 

market participants. We have, for quite general correlation structures: 

P
Z −→ α, 

by the law of large numbers. For M and α specified in the null hypothesis, we can test H0 using 

Z as the test statistic. 
We compute standard errors for the test using binomial probabilities. While we would ideally 

compute cluster-robust standard errors for our test, having observed no exceptions means residuals 

are all zero. To proceed, we assume that exceptions are perfectly correlated when underlying losses 

overlap (for robustness against autocorrelation), and also assume that exceptions are uncorrelated 

across accounts. 
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In particular, standard errors are computed as  
α(1 − α)ζM

S.E. = . 
NT 

In the above equation, the term ζM := 2M − 1 adjusts for our assumption that exceptions are 

perfectly correlated when underlying losses overlap. For α = 1%, NT = 6, 656 and M = 5, we 

obtain a standard error of 0.37%. 
We remark that our standard errors are likely to be overly conservative. As a robustness 

check, we also compute one-day returns and autocorrelation estimates. For each account, we find 

autocorrelation estimates on the orders of 10−4 for the first five lags. Thus, autocorrelation would 

likely have a smaller impact on actual standard errors compared to our assumption of perfect 

correlation. 
Finally, to explicitly account for potential cross-sectional correlation in the returns on margins, 

we perform the test separately account by account, finding that the null hypothesis is rejected in 

every case. 

A.3 Time-series test of the V aR rule using counterfactual returns 

We compute our test statistic using an extended version of Eq. (A.2): 

T U N1 
Z ' = I{Ψ5,uMtM(Xn

t ) < −IMt(Xn
t )},NTU 

t=1 u=1 n=1 

where Ψ5,uMtM(Xn) is constructed as in Duffie et al. (2015) (see Appendix A.1 for additional t 

details), and U is the number of evaluation dates. For each portfolio Xn, we estimate the frequency t 

at which losses exceed portfolio margins. Under the null hypothesis of a 5-day 99% VaR margining 

rule, Z ' should converge to 1% in probability. 
The test can be simply implemented as a regression of observed exceedances onto a constant, 

with double-clustering as in Petersen (2009) by time and by account (there is no need to use the 

binomial model as exceedances are observed in the data, so the variance of the residuals is nonzero). 

A.4 Cross-sectional test of the V aR rule 

The margining rule H0 implies P(ΨM,t(Xn) < −IMt(Xn)) = α for all n, which further implies t t 

H ' � � 
0 : P(ΨM,t(Xn

t ) < −IMt(Xn
t )) = P(ΨM,t(Xn

t ) < −IMt(Xn
t )), 

for all n  '. The statistics to consider are then = n

T1 P
Zn := I{ΨM,t(Xn) + IMt(Xn) < 0} −→ α. 

T t t 
t=1 
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'We describe here how to implement a test for equality is implemented for H0. The most straight­
forward test for equality of the frequencies of exceptions across accounts is the G−test (i.e. the 

two-way likelihood ratio test). Because the confidence level is expected to be large (the expected 

frequency of exceptions is low), the typical χ2−test for homogeneity is not appropriate (Hoey 

(2012)). As exceptions are expected to occur with low probability, we instead use the G−test to 

test the null hypothesis. 
The test statistic is computed as: 

N 

G := 2 On log 
On 

,
Enn=1 

where On is the observed number of exceptions for clearing member n, and En is the expected num­
ber of exceptions for account n. The probability of observing an exception, needed for calculating 

En, is estimated by pooling observations across accounts. In particular, 

T U N1 
En := TU × Z = I{Ψ5,uMtM(Xn

t ) < −IMt(Xn
t )},

N 
t=1 u=1 n =1 

and 

T U 

On := I{Ψ5,uMtM(Xn
t ) < −IMt(Xn

t )}. 
t=1 u=1 

dUnder the null that frequencies are the same for each account, G → χN
2 

−1. 

We also derive an extension of this test that explicitly accounts for potential autocorrelation 

of the exceptions. For a fixed portfolio, we first count the number of exceptions, and then divide 

it by the number of evaluation dates. This gives an estimate for the probability of an exception 

occurring for that portfolio. We then sum the exception probabilities for portfolios associated with 

each fixed account, and use the rounded up integer as the estimate of observed exceptions for that 

account. We enter this estimate into the contingency table used for the G−test. Formally, we 

estimate the probability of an exception for an account/day combination (n, t) as 

T1 
p̂n,t = I{Ψ5,uMtM(Xn

t ) < −IMt(Xn
t )}. T 

u=1 

The number of (estimated) observed exceptions is then 

T 

Ôn := p̂n,t . 
t=1 

The estimate Ôn replaces On in our computation of the G statistic (Eq. (A.4)).25 The estimated 

25The ceiling operation is performed to ensure that the contingency table only contains integer entries. We also 
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observations are thus more robust to autocorrelation compared to treating each observation as an 

individual count, which may inflate the sample size. 

A.5 Robustness: Details 

In this section we provide more details about the robustness tests of Section 4.4. 

A.5.1 Counterfactual losses and realized returns 

The historical simulation method presented in Section 3.3.2 uses the so-called DV01 approximation 

as in Duffie et al. (2015). We assess the robustness to this approximation by using the historical 
simulation method to compute losses for the 2014–2016 sample period, during which we also observe 

realized losses for the actual portfolios. Comparing the two sets of losses, we can assess how well 
the simulation method captures realized returns. 

T able A.4 

Table A.4 indicates that while the counterfactual losses are on average smaller than the realized 

losses, they are more variable. In fact, compared to either the standard deviation of realized or 

counterfactual losses, the two average losses are statistically indistinguishable. A higher standard 

deviation for the counterfactual losses is expected, because these are computed using a first order 

linear approximation to real price movements, and do not incorporate second order convexity effects 

that stabilize price movements. 
The correlation between the two variables is 50%, indicating that the counterfactual losses do 

serve as a reasonable approximation of the realized losses, even though they are not identical. 

A.5.2 CDS DV01 approximation duration 

We assess the robustness of the time series test presented in Section 3.3.2 to varying assumptions 

on the duration used in the DV01 formula. We assess this by “stressing” our simulated losses: 
the entire set of counterfactual losses is recomputed with the alternative assumption d = 5. This 

adjustment directly scales up the level of losses and increases the number of exceptions recorded. 
Of course, this assumption is very conservative, since the most actively traded CDS contracts are 

five year contracts, so they have a duration slightly lower than five at the contract’s inception. 
Their duration becomes lower as they are held in the portfolio and maturity shortens. 

T able A.5 

We compute the return on margins with the counterfactual losses computed using d = 5. We 

report descriptive statistics and test results in Table A.5. As the duration assumption merely scales 

the level of losses, the descriptive statistics display a similar loss distribution to that reported in 

performed the test with unrounded data, yielding similar, if not stronger, results. 
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Table 4. About half of the empirical distribution of returns lies between ±3.2%. Aggregating over 

observations account/time/historical 5-day window combinations, we see the empirical 99% Value 

at Risk is approximately 45% of posted margins. 
When testing the VaR margining rule, we see that there are more observed exceptions (23,268 

versus 3,456 for the d = 3 case). This brings the empirical frequency of exceptions closer to 1%. 
However, the result is still statistically significantly less than 1%. Thus, even with very conservative 

duration assumptions and including the crisis period of 2007–2009 in the calculations, there is still 
strong evidence against the 5-day 99% VaR rule, showing robustness to our previous conclusions. 

A.5.3 Varying risk measurement windows 

Value-at-Risk and maximum shortfall used in the panel analyses (Tables 8 and 9) were based on 

P&L generated from our entire sample of credit spreads (that is, on the entire historical distribu­
tion of returns for each portfolio held at time t by member n). Because our dataset covered the 

financial crisis, the risk measures captured extreme movements and may thus be viewed as overly 

conservative for estimating portfolio losses. In this section we consider using only the last 1000 days 

(approximately 4 years) of credit spreads data to generate P&L, as in Duffie et al. (2015). Using 

these newly estimated counterfactual P&L, we compute Value-at-Risk and maximum shortfall. We 

replicate our panel analyses and report the results in Tables A.6 and A.7. 

T able A.6 

T able A.7 

There is a general increase in standard errors when we use only recent data to estimate Value­
at-Risk and maximum shortfall, and a general decrease in explanatory power. This may indicate 

that clearinghouse margining rules place significant weight on historical crisis and downturns, and 

that their estimates of portfolio losses mostly replicate extreme losses such as those observed during 

the financial crisis. 
In particular, comparing Table A.6 to Table 8, we see there is a distinct decrease in explanatory 

power of Value-at-Risk (V aR) (columns (1) and (2)). This is likely due the exclusion of the 

financial crisis period in our simulation, resulting in both lower level and variability of Value-at-Risk. 
Maximum shortfall (MS) and aggregate short notional (AS) still retain strong explanatory power 

(columns (3) and (4)), and the aggregate short notional coefficient estimate remains around the 2% 

range (columns (5) and (6)). Columns (5) and (6) show that Value-at-Risk has little explanatory 

power beyond that already captured by maximum shortfall and aggregate short notional. Columns 

(7) and (8) show that the DSV model still captures a significant portion of variation in initial 
margins, and outperforms Value-at-Risk in terms of explanatory power (columns (1) and (2)). 
The significance of the DSV slope coefficient persists when we introduce Value-at-Risk, and the 

explanatory power remains roughly the same, showing that Value-at-Risk has little explanatory 

power beyond that already captured by DSV. The explanatory power increases when we consider the 
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modified DSV model (columns (11) and (12)). However, Value-at-Risk still has little explanatory 

power beyond that already captured by our modified DSV model. Our conclusions remain consistent 

with our previous results. 
Comparing Table A.7 to Table A.6, we observe again that there is a non-negligible increase 

in explanatory power compared to models that include only portfolio variables (Table A.6). This 

confirms that market variables can capture a dimension of initial margins not explained by portfolio 

variables. Compared to Table 9, we see that the modified DSV model retains significance and 

explanatory power, and that Value-at-Risk still has little explanatory power beyond that already 

captured by the modified DSV model (columns (1) and (2)). We find again that market volatility 

(measured by VIX) plays a significant role in explaining margins (columns (1), (2), (5), and (6)). 
The loading for member CDS spreads remains negative and is significant in column (3). Columns (5) 

and (6) replace the modified DSV margins using maximum shortfall and aggregate short notional. 
The estimated coefficient for aggregate short notional is significant around 2%, showing robustness 

to our previous results. Maximum shortfall becomes insignificant, likely due to the high correlation 

with Value-at-Risk. 
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Table A.1: Test results for M -day VaR rules, correcting for autocorrelation.
 

p-values Effective Duration (Years): 

M : MPoR in days 3 5 

1 < 10−4 < 10−4 

3 < 10−4 < 10−4 

5 < 10−4 < 10−4 

7 < 10−4 < 10−4 

10 < 10−4 < 10−4 

df = 12 

Note: The table repeats the analysis of Table 5, but using a more conservative procedure that accounts for 
potential serial correlation. 
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Table A.2: Initial margins and market variables summary statistics
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Market variables, in basis points (bps) 

Summary Statistic In. Margins (IMn,t) Overnight Index Swap Spread (OISt) LIBOR-OIS spread (LOISt) CBOE VIX (V IXt) 

Pooled mean (over all n and t): µ(xn,t) 654.5 18.4 15.5 1, 613.5
 

Std. deviation (over all n and t): σ(xn,t) 367.0 10.6 4.1 434.9
 

Market variables, in basis points (bps) 

Summary Statistic In. Margins (IMn,t) CDS spread (CDSn,t) Avg. CDS spread (ACDSt) 

Pooled mean (over all n and t): µ(xn,t) 654.5 76.0 76.0 

Std. deviation (over all n and t): σ(xn,t) 367.0 22.0 15.3 

Time-series variation of cross-sectional averages: σ(x̄t) 48.7 15.3 

Mean cross-sectional dispersion: µ(σt(xn,t)) 370.7 15.0 

Cross-sectional dispersion of time-series averages: σ(x̄n) 325.1 10.7 

Mean time-series dispersion: µ(σn(xn,t)) 162.4 17.5 

Note: The table displays summary statistics of our key market variables and initial margins, in basis points and
millions of USD, respectively. Definitions of market variables are reported in Table 6. In addition to the overall 
mean and standard deviations (dispersions), we report panel statistics that describe properties of variables both
across accounts and time, the calculations of which are reviewed in Table 7. Panel summaries are not reported for 
market variables that do not vary across accounts. 



Table A.3: Check for multicollinearity
 

Estimates Dependent variable: 
(R2) 

SD ES 

V aR 0.338∗∗∗ 1.342∗∗∗ 

(OLS) (98.6%) (96.7%) 

V aR 0.341∗∗∗ 1.371∗∗∗ 

(Two-way Panel) (99.3%) (98.7%) 

Observations 6,721 6,721 

∗∗∗p<0.01 

Note: We regress both expected shortfall and standard deviation on Value-at-Risk, and report the results. The
first row corresponds to estimates from (pooled) OLS regression, and the second row corresponds to estimates after 
accounting for time and account fixed effects. Coefficient estimates are all significant at the 1% level. R2’s are in 
parentheses. 

Table A.4: Comparing counterfactual losses to realized losses 

Realized Losses Counterfactual Losses 

Observations 6,604 6,604 

Average losses ($) 110,234 24,553 

Standard deviation of losses ($) 30,617,420 44,885,349 

Pearson Correlation 0.5026 

Note: This table compares the historical simulation method to compute losses for the 2014–2016 sample period
(based on the methodology of Duffie et al. (2015)) with the observed realized losses for the actual portfolios. 
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Table A.5: Descriptive statistics for historically simulated return on margins for d = 5 with two-way 
clustered standard errors 

5-day-ahead return on margins (rm) d = 5 

Observations 22,199,463 

Mean(%) 0.02 

S.D.(%) 14.40 

Kurtosis 31.25 

Range(%) [-446.60, 270.70] 
Interquartile Range (Q3-Q1)(%) [-3.14, 3.16] 
Empirical V aR5,0.05(%) -18.47 

Empirical V aR5,0.01(%) -44.93 

Empirical V aR5,0.001(%) -101.48 

|rm| ≤ 0.43 (%) 97.78 

Test results for H0 : P(rm < −100%) = 1% 

Initial Margin Exceptions 23,268 

Ratio (Z �) 1.05 × 10−3 

S.E.† 5.29 × 10−4% 

t-stat -16.92 

Note: Same as Table 4, but calibrating the average portfolio duration d to 5 years instead of 3. 
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Table A.6: Regression results for initial margins with portfolio variables using last 1000 days of P&L
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Dependent variable: Initial margins (IM) 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

Value-at-Risk (V aR) 4.104∗∗∗ 

(1.090) 
2.268∗∗ 

(0.891) 
2.440∗ 

(1.280) 
2.097 

(1.694) 
0.008 

(0.863) 
−0.419 
(1.113) 

0.939 
(0.757) 

0.289 
(0.816) 

Maximum shortfall (MS) −0.225 
(0.542) 

−0.399 
(0.662) 

0.884∗∗ 

(0.356) 
0.437∗∗∗ 

(0.147) 

Aggregate short notional (AS) 0.025∗∗∗ 

(0.004) 
0.023∗∗∗ 

(0.007) 
0.026∗∗∗ 

(0.004) 
0.024∗∗∗ 

(0.007) 

Duffie et al. model (DSV ) 1.166∗∗∗ 

(0.187) 
0.882∗∗∗ 

(0.196) 
1.165∗∗∗ 

(0.223) 
0.962∗∗∗ 

(0.349) 

Modified DSV model (MDSV ) 1.216∗∗∗ 1.091∗∗∗ 

(0.213) (0.345) 

Observations 6,721 6,721 6,721 6,721 6,721 6,721 6,721 6,721 6,721 6,721 6,721 6,721 
Adjusted R2 0.391 0.764 0.663 0.837 0.647 0.829 0.641 0.818 0.641 0.819 0.655 0.829 
Account FE N Y N Y N Y N Y N Y N Y 
Time FE N Y N Y N Y N Y N Y N Y 

Note: ∗ p<0.1; ∗∗ p<0.05; ∗∗∗ p<0.01
 

Note: Same as Table 8, but computing risk measures only using last 1000 days of simulated return on margins
 



Table A.7: Regression results for initial margins using portfolio and market variables with last 1000 
days of P&L 

Dependent variable: 

(1) (2) (3) (4) (5) (6) 
Value-at-Risk (V aR) 0.844 

(0.752) 
0.382 

(0.789) 
0.867 

(0.749) 
0.386 

(0.809) 
2.450∗∗ 

(1.166) 
2.064 

(1.564) 

Modified DSV model (MDSV ) 1.270∗∗∗ 

(0.193) 
0.935∗∗ 

(0.363) 
1.257∗∗∗ 

(0.199) 
0.984∗∗∗ 

(0.352) 

Maximum shortfall (MS) −0.257 
(0.492) 

−0.402 
(0.607) 

Aggregate short notional (AS) 0.026∗∗∗ 

(0.004) 
0.020∗∗∗ 

(0.007) 

CBOE volatility index (V IX) 0.045∗∗ 

(0.018) 
0.042∗∗ 

(0.017) 
0.062∗∗∗ 

(0.015) 
0.060∗∗∗ 

(0.021) 
0.046∗∗ 

(0.018) 
0.044∗∗ 

(0.018) 

Member CDS spread (CDS) −2.041 
(1.920) 

−2.818∗ 

(1.687) 
−1.424 
(1.428) 

−1.586 
(0.977) 

−2.208 
(1.889) 

−2.363 
(1.560) 

Average CDS spread (ACDS) 3.775∗∗ 

(1.681) 
4.390∗∗ 

(2.164) 
3.882∗∗ 

(1.622) 
3.895∗ 

(2.045) 

LIBOR-OIS spread (LOIS) 11.002∗∗ 

(4.333) 
10.993∗∗ 

(5.073) 

Observations 
Adjusted R2 

Account FE 

6,721 
0.674 
N 

6,721 
0.836 
Y 

6,721 
0.673 
N 

6,721 
0.834 
Y 

6,721 
0.683 
N 

6,721 
0.842 
Y 

Time FE N N N N N N 

Note: ∗ p<0.1; ∗∗ p<0.05; ∗∗∗ p<0.01
 

Note: Same as Table 9, but computing risk measures only using last 1000 days of simulated return on margins
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