1	U.S. COMMODITY FUTURES TRADING COMMISSION (CFTC)
2	ENERGY AND ENVIRONMENTAL MARKETS ADVISORY COMMITTEE
3	(EEMAC)
4	
5	Thursday, November 7, 2019
6	10:01 a.m.
7	
8	Location:
9	Commodity Futures Trading Commission (CFTC)
10	Office of Secretariat
11	Three Lafayette Centre
12	1155 21st Street, N.W.
13	Washington, D.C. 20581
14	BEFORE:
15	Dan M. Berkovitz, EEMAC Sponsor, Commissioner,
16	CFTC
17	Dena E. Wiggins, Chairperson
18	ALSO PRESENT:
19	Heath P. Tarbert, Chairman, CFTC
20	Rostin Behnam, Commissioner, CFTC
21	Dawn D. Stump, Commissioner, CFTC
22	

1	AGENDA	
2	PRESENTATION	PAGE
3	Welcome and Opening Remarks	11
4	Commissioner Dan M. Berkovitz	11
5	Chairman Heath P. Tarbert	18
6	Commissioner Rostin Behnam	20
7	Commissioner Dawn D. Stump	21
8	Panel I: The Global Energy Transition: Evolving	
9	Standards Impacting Physical Markets	24
10	Tyson T. Slocum	24
11	Jenny Fordham	32
12	Sue Kelly	40
13	Vincent Johnson	46
14	Panel II: Exchange-Traded Environmental	
15	Derivatives Contracts	78
16	Daniel Scarbrough	78
17	Michael Kierstead	90
18	Richard Sandor	96
19		
20		
21		
22		

1	AGENDA (Continued)	
2	PRESENTATION (Continued)	PAGE
3	Panel III: The Impact of the Global Energy	
4	Transition on Market Participants' Use of the	
5	Energy and Environmental Derivatives Markets	132
6	Matthew Picardi	132
7	Lopa Parikh	147
8	Paul Hughes	158
9	William F. McCoy	172
10	Jackie Roberts	181
11	Closing Remarks	
12	Commissioner Rostin Behnam	199
13	Commissioner Dawn D. Stump	201
14	Commissioner Dan M. Berkovitz	203
15		
16		
17		
18		
19		
20		
21		
22		

1	
2	
3	
4	PROCEEDINGS
5	MS. KNAUFF: Good morning. As the Secretary
6	of the Energy and Environmental Markets Advisory
7	Committee, it is my pleasure to call this meeting to
8	order. This is the second meeting for Commissioner
9	Berkovitz as the sponsor of the committee and the
10	second EEMAC meeting of 2019. EEMAC Member Dena E.
11	Wiggins will serve as the Chair of today's meeting.
12	I would like to welcome all of our new and
13	returning Members and Associate Members to the
14	committee. We have six new Associate Members at
15	today's meeting. So let's have each Member and
16	Associate Member state his or her name, the
17	organization that he or she represents on the EEMAC,
18	and whether he or she is a Member or an Associate
19	Member of the committee. When you introduce yourself,
20	please press the silver button at the base of your
21	microphone, wait for the red light to indicate that it

is on, and keep the microphone only a few inches away

- 1 as you speak so that the webcast and teleconference
- 2 audiences can hear you.
- 3 Please note that the meeting is being
- 4 recorded on the phone. So it is important that the
- 5 microphones capture the entirety of your remarks.
- 6 Please turn off your microphone after you speak and
- 7 refrain from placing mobile devices near the
- 8 microphones as this may cause interference.
- 9 We will begin with Matthew.
- 10 MR. AGEN: Good morning. My name is Matthew
- 11 Agen. I am the Assistant General Counsel at the
- 12 American Gas Association. The American Gas Association
- 13 represents over 200 natural gas utilities throughout
- 14 the United States. And I am happy to be here. We are
- 15 an Associate Member of the committee.
- MR. ALLISON: I am James Allison, JCA
- 17 Advisory Services, LLC, which is a boutique consulting
- 18 firm. Previously I was with ConocoPhillips. So I know
- 19 many of you from that capacity. And I will confess I
- 20 don't know whether I'm a Member or Associate Member.
- 21 So, Abigail, if you can enlighten me on that point?
- MS. KNAUFF: Associate Member.

- 1 MR. CICIO: My name is Paul Cicio. I am
- 2 President of the Industrial Energy Consumers of
- 3 America. We represent energy-intensive manufacturing
- 4 companies that are substantial consumers of natural gas
- 5 and electricity. Associate Member.
- 6 MR. COTA: I am Sean Cota, President and CEO
- 7 of NEFI, which is an organization that represents
- 8 retail home heating oil and heating fuels marketers,
- 9 including renewable fuels, which is a very significant
- 10 part of what we do. We heat about 6 and a half million
- 11 homes, of which 82 percent are in the Northeast sector
- 12 of the United States.
- MR. DUNLEAVY: Dan Dunleavy with Ingevity
- 14 Chemicals, a new Associate Member. We are based in
- 15 Charleston, South Carolina. Most of our products are
- 16 considered biorenewables. We are a large consumer of
- 17 natural gas and electricity.
- MR. HEINLE: Erik Heinle, new Associate
- 19 Member as well. D.C. Office of the People's Counsel.
- 20 We represent residential ratepayers and small
- 21 businesses in the District of Columbia.
- MR. HUGHES: Paul Hughes. I am the

- 1 Generation Policy Manager at Southern Company. We are
- 2 an electric and natural gas utility holding company in
- 3 the Southeast. [Associate Member]
- 4 MR. CREAMER: Rob Creamer. I am with FIA
- 5 PTG, which is an association that represents the
- 6 principal trading community. [Member]
- 7 MR. DURKIN: Hello. Bryan Durkin, President
- 8 of the CME Group. [Member]
- 9 MR. JACKSON: Ben Jackson, President of
- 10 Intercontinental Exchange. Member.
- 11 MR. SLOCUM: Tyson Slocum. I direct the
- 12 Energy Program of Public Citizen, an organization
- 13 representing household consumers. [Member]
- MS. FORDHAM: I am Jenny Fordham. I am with
- 15 the Natural Gas Supply Association. [Guest panelist]
- MS. KELLY: I am Sue Kelly. I am the
- 17 President and CEO of the American Public Power
- 18 Association. We represent the interests of
- 19 approximately 2,000 government-owned utilities, state
- 20 and local governmental units, in the United States. I
- 21 am an Associate Member.
- MR. JOHNSON: Hello. Vincent Johnson. I am

- 1 with BP. I am the Head of Commercial Advocacy and
- 2 Regulatory Affairs for BP Supply and Trading Program.
- 3 And I am an Associate Member.
- 4 MR. McCOY: Bill McCoy. I am with Morgan
- 5 Stanley. And I am a Member.
- 6 MS. PARIKH: Lopa Parikh, Senior Director of
- 7 Federal Regulatory Affairs at the Edison Electric
- 8 Institute. We represent all of the investor-owned
- 9 utilities in the United States. And I am a regular
- 10 Member.
- 11 MS. ROBERTS: Jackie Roberts. I am the West
- 12 Virginia Consumer Advocate. I am charged by law to
- 13 represent the interests of retail customers in state
- 14 and Federal courts, which includes the state
- 15 commission, the Federal FERC, and I do a lot of RTO
- 16 work. And I am a Member.
- MR. MALIK: Kaiser Malik with the Calpine
- 18 Corporation. We are a power generation company with
- 19 assets in all of the major markets with a large retail
- 20 footprint. I am an Associate Member and happy to be
- 21 here. Thank you.
- MR. MORK: I am Robert Mork. I am working

- 1 with the National Association of Utility Consumer
- 2 Advocates, representing utility consumers. [Associate
- 3 Member]
- 4 MR. PARSONS: I am John Parsons from MIT
- 5 Sloan School of Management and here as a Special
- 6 Government Employee as an Associate Member.
- 7 MR. PICARDI: I am Matt Picardi. I am here
- 8 on behalf of the Commercial Energy Working Group, which
- 9 is a diverse group of energy companies that supply
- 10 various products to commercial, residential, industrial
- 11 customers. [Associate Member]
- MR. PROKOP: Good morning. Mike Prokop with
- 13 Deloitte and Touche, LLP. I am an Associate Member.
- 14 MS. PRUDENCIO: Good morning. Malinda
- 15 Prudencio. I am the Chief Risk Officer for the Energy
- 16 Authority. We are based out of Jacksonville, Florida,
- 17 but we do risk management for 50 public power
- 18 utilities. [Associate Member]
- 19 MR. SANDOR: I am Richard Sandor, CEO of AFX,
- 20 which is developing an alternative to LIBOR and also
- 21 the Aaron Director Lecturer in Law and Economics at the
- 22 University of Chicago. [Associate Member,

- 1 Environmental Financial Products, LLC]
- 2 MS. SIDHOM: Noha Sidhom, the Executive
- 3 Director of the Energy Trading Institute. We represent
- 4 medium- to large-sized trading firms that transact in
- 5 the power and gas markets. And we are a new Associate
- 6 Member.
- 7 MS. KNAUFF: Thank you. I would also want to
- 8 confirm that we have an Associate Member, Timothy
- 9 McKone of Citigroup Energy, on the phone.
- 10 MR. McKONE: Yes. I am here. Hi, Abigail.
- 11 MS. KNAUFF: Excellent. Thank you.
- We look forward to today's discussions and
- 13 full participation by all of the EEMAC Members and
- 14 Associate Members. If you would like to be recognized
- 15 during today's discussion, please place your name card
- 16 vertically on the table before you speak. Please
- 17 identify yourself and your organization that you
- 18 represent on the EEMAC. For EEMAC Members or Associate
- 19 Members participating by phone, please keep your phone
- 20 on mute until you are ready to speak and identify
- 21 yourself beforehand.
- With the logistics out of the way, we will

- 1 now hear from Commissioner Berkovitz, the EEMAC
- 2 Sponsor, who will give his opening remarks.
- 3 COMMISSIONER BERKOVITZ: Thank you, Abigail.
- 4 Good morning, and welcome to all of the
- 5 Members and Associate Members of the Energy and
- 6 Environmental Markets Advisory Committee.
- 7 I would like to begin by welcoming our six
- 8 new Associate Members, who have introduced themselves,
- 9 but I would like to recognize them: Dr. John Parsons
- 10 from MIT; Sean Cota, the President and CEO of New
- 11 England Fuel Institute; Noha Sidhom, CEO of TPC Energy,
- 12 LLC and the co-founder and Executive Director of the
- 13 Energy Trading Institute; Kaiser Malik, Vice President
- 14 and Assistant General Counsel for Calpine's wholesale
- 15 power, natural gas, and environmental trading and
- 16 marketing operations; Erik Heinle, from the District of
- 17 Columbia Office of People's Counsel; and Dan Dunleavy,
- 18 Manager of Energy Strategy for Ingevity Corporation. I
- 19 would like to welcome each of you and look forward to
- 20 hearing from your diverse perspectives.
- 21 I would like to thank also all of our
- 22 returning Members and Associate Members for joining us

- 1 today. The insights you share with the Commission
- 2 through your participation in the EEMAC are very
- 3 valuable and much appreciated.
- 4 I would also like to thank Dena Wiggins for
- 5 her continued service to the committee as the EEMAC
- 6 Chair. Ms. Wiggins is the President and CEO of the
- 7 Natural Gas Supply Association and has over 25 years of
- 8 experience representing energy clients in Federal
- 9 regulatory matters. This is Dena's third meeting as
- 10 EEMAC Chair. And we are grateful for your volunteering
- 11 and leadership in this capacity.
- I am pleased to recognize our Chairman and
- 13 fellow Commissioners here today: Chairman Tarbert,
- 14 Commissioner Behnam, Commissioner Stump to my left, and
- 15 appreciate their participation and support for this
- 16 committee.
- I would also like to thank the Commission
- 18 staff that made today's meeting possible, including
- 19 Abigail Knauff, our EEMAC Secretary; Margie Yates and
- 20 Altonio Downing of the Commission staff; Lucy Hynes and
- 21 Erica Quinlan on my staff; Michelle Ghim in the Office
- 22 of General Counsel; and everyone else who worked so

- 1 hard behind the scenes to prepare for this meeting. I
- 2 came down yesterday afternoon as they were going
- 3 through a run through a final setup. And everything
- 4 that you see so neat and organized and working together
- 5 was in a total state of flux yesterday. These panels
- 6 were open. The mikes were being plugged in. The
- 7 nametags were put in the appropriate place. All of the
- 8 packets were organized. So what you see today -- and
- 9 the organization looks easy and looks simple, but it
- 10 was actually really hard. And I think the fact that it
- 11 looks easy and looks simple is a testament to how hard
- 12 and difficult and how much work they put into it. So,
- 13 again, I would like to thank everybody for all of the
- 14 work they put into facilitating today's meeting.
- I now would like to recognize Sue Kelly,
- 16 President of the American Public Power Association.
- 17 Sue announced that she will be leaving us at the end of
- 18 this year. And this will be your last meeting on this
- 19 advisory committee?
- 20 MS. KELLY: That is correct. And I very much
- 21 appreciate the opportunity to provide this service.
- 22 COMMISSIONER BERKOVITZ: Thank you. My

- 1 relationship with Sue goes back many years: my
- 2 previous service here at the Commission as General
- 3 Counsel, worked together with Sue in the APPA on the
- 4 Dodd-Frank legislation and implementing regulations.
- 5 Shortly after I left the agency, I recall Sue's
- 6 invitation, going out to Seattle to an APPA meeting,
- 7 providing a tutorial on the Commission's new
- 8 regulations. Both then and now, Sue has been a
- 9 tireless -- perhaps a better word would be
- 10 "relentless" -- advocate for APPA in the interest of
- 11 public power utilities here at the Commission. You
- 12 have been a true leader in this industry. And your
- 13 strong voice will be sorely missed here at the CFTC.
- 14 So thank you.
- 15 The CFTC established this committee in 2008
- 16 as the Energy Markets Advisory Committee to advise the
- 17 Commission on developments in energy markets that raise
- 18 new issues for the CFTC and to recommend appropriate
- 19 regulatory responses to ensure market integrity and
- 20 protect consumers. In 2009, under former Commissioner
- 21 Bart Chilton's leadership, the Commission expanded the
- 22 scope of the committee to include environmental

- 1 markets.
- 2 Like the committee's inaugural meeting in
- 3 2009, we will focus today's presentations on the
- 4 environmental markets. But in the intervening 10
- 5 years, the landscape of energy generation has changed
- 6 dramatically, in ways that nobody could have foreseen
- 7 or did foresee 10 years ago. New technologies have
- 8 enabled the U.S. to be the world's largest producer of
- 9 natural gas and crude oil. And energy generation from
- 10 renewable sources, such as solar and wind, has doubled.
- 11 As the mix of energy sources continues to diversify and
- 12 firms continue to innovate, we can expect further
- 13 changes in the physical markets, which may lead to
- 14 corresponding changes in how market participants use
- 15 derivatives to hedge their risks.
- Today's meeting will focus on how the
- 17 evolving mix of energy generation resources, which
- 18 includes coal, natural gas, nuclear, oil, and various
- 19 renewable energy sources, is impacting the physical
- 20 markets and may subsequently impact the energy and
- 21 environmental derivatives markets that are regulated by
- 22 the CFTC.

- 1 Our first panel will explore the evolving
- 2 state, Federal, and global regulations that impose
- 3 various renewable energy mandates and goals for energy
- 4 production and procurement. Tyson Slocum from Public
- 5 Citizen will begin by discussing how regulation and
- 6 market forces are affecting the deployment of renewable
- 7 energy and suggest ways in which the Federal Government
- 8 can assist in the growth of renewable energy. Jenny
- 9 Fordham from the Natural Gas Supply Association, Sue
- 10 Kelly from APPA, and Vincent Johnson from BP Energy
- 11 Company will discuss some of the challenges of and
- 12 opportunities for incorporating renewables into the
- 13 power supply, including the shifts in capital
- 14 investment, maintaining affordable prices, and managing
- 15 risk.
- Panel II, "Exchange-Traded Environmental
- 17 Derivatives Contracts," we will hear from Daniel
- 18 Scarbrough of IncubEx, a partner of Nodal Exchange and
- 19 EEX Group, and Michael Kierstead of ICE. Dan and Mike
- 20 will give us an overview of the current state of CFTC-
- 21 regulated environmental futures markets, including
- 22 emissions trading and renewable energy certificate

- 1 futures. Dr. Richard Sandor, who is a global leader in
- 2 successfully creating new financial products and
- 3 markets, will explain how new products and markets are
- 4 created.
- 5 Our third and final panel will discuss the
- 6 effect of the energy transition on how market
- 7 participants hedge risk using exchange-traded and OTC
- 8 derivatives. Our panelists include Matt Picardi of the
- 9 Commercial Energy Working Group, Lopa Parikh of Edison
- 10 Electric Institute, Paul Hughes of Southern Company,
- 11 Bill McCoy of Morgan Stanley, and Jackie Roberts of the
- 12 Consumer Advocate Division of West Virginia. The
- 13 panelists will describe how they use CFTC-regulated
- 14 exchanges and OTC markets to manage risks for renewable
- 15 energy commodities and project financing as well as
- 16 limitations presented by those markets.
- We look forward to hearing from our Members
- 18 and Associate Members on these issues.
- 19 With that, I will turn it back to Abigail.
- 20 MS. KNAUFF: Thank you, Commissioner
- 21 Berkovitz.
- I now recognize Chairman Tarbert to give his

- 1 opening remarks.
- 2 CFTC CHAIRMAN TARBERT: Thank you very much,
- 3 and good morning. I am very pleased to be attending my
- 4 first EEMAC meeting as CFTC Chairman.
- 5 Our energy markets are the bedrock of our
- 6 economy. The United States is the world's largest
- 7 producer of both natural gas and oil. The United
- 8 States is the second-largest generator of electricity.
- 9 So one of my strategic goals as Chairman is to regulate
- 10 our derivatives markets to promote the interests of all
- 11 Americans. And this is critical for the energy sector
- 12 in particular. Energy derivatives markets affect the
- 13 pocketbook of every American, from the price of
- 14 gasoline at the pump to the cost of heating our homes.
- To achieve this goal, the Commission needs
- 16 insight from all of you. That makes today's EEMAC
- 17 meeting especially important. I want to thank
- 18 Commissioner Berkovitz and his staff for sponsoring
- 19 this meeting. Thanks also to Abigail, our Designated
- 20 Federal Officer, for organizing it. And I am also
- 21 grateful to Dena and to all the Members and the
- 22 Associate Members that are here today, both those of

- 1 you that have served that are stepping down and those
- 2 of you that have joined. And I have gotten a chance to
- 3 meet a number of you during my first 100 days here at
- 4 the CFTC, and I look forward to meeting the rest of you
- 5 in due course. And it is really important for us to
- 6 really hear your views because we find it incredibly
- 7 insightful.
- 8 Many of the CFTC's core agenda items directly
- 9 touch on the energy markets. The Commission's
- 10 forthcoming position limits rule proposal is one
- 11 example. And the proposal is intended to provide an
- 12 appropriately flexible bona fide hedging exemption.
- 13 This will allow energy producers, merchandisers, and
- 14 distributors to better manage the many risks of your
- 15 businesses.
- 16 Another example is the Commission's swap data
- 17 reporting rules. The changes we will propose are going
- 18 to be designed to streamline reporting. This should
- 19 reduce regulatory burdens and also make it easier to
- 20 use swaps data, increasing transparency in our energy
- 21 swaps markets. These and other efforts will help
- 22 promote America's energy derivatives markets through

- 1 sound regulation.
- I look forward to working with all of you to
- 3 ensure that these markets continue to serve our
- 4 participants and consumers. And thank you very much
- 5 again for being here.
- 6 MS. KNAUFF: Thank you, Chairman Tarbert. I
- 7 now recognize Commissioner Behnam to give his opening
- 8 remarks.
- 9 COMMISSIONER BEHNAM: Good morning. Welcome,
- 10 everyone. Good to see you here in Washington at the
- 11 CFTC. First off, thank you to Commissioner Berkovitz
- 12 for sponsoring the EEMAC and holding this important
- 13 meeting. And thanks to Abigail, the DFO; and Dena as
- 14 Chair.
- 15 I want to emphasize Commissioner Berkovitz's
- 16 comments, obviously, about the work that goes into
- 17 these meetings and the staff-level sort of
- 18 prioritization of all of the work that has to be put
- 19 together to make the meetings easy and helpful and
- 20 productive for all of us. So all of these individuals
- 21 do deserve a big thanks.
- Looking forward to the agenda, as the

- 1 Chairman noted. As America and the energy production
- 2 that we produce is so important for our citizens and as
- 3 we begin to transition energy sources, these
- 4 discussions become ever more important. I think from
- 5 the CFTC's perspective, as we think about as a
- 6 community of market participants and regulators, to
- 7 think about what energy products, what risk management
- 8 products our consumers can use to help them mitigate
- 9 risk and ultimately provide consumers with the most
- 10 affordable and productive energy sources. So certainly
- 11 looking forward to today's conversation.
- 12 Again, thank you to Commissioner Berkovitz
- 13 for his sponsorship and convening this meeting. And I
- 14 look forward to the discussion.
- MS. KNAUFF: Thank you, Commissioner Behnam.
- 16 I now recognize Commissioner Stump to give her opening
- 17 remarks.
- 18 COMMISSIONER STUMP: Someone always has to go
- 19 last. So I won't repeat what has been said, but I am
- 20 very grateful to everyone who worked hard to pull the
- 21 meeting together.
- There is no space in the markets that we work

- 1 in where it is more obvious that the markets we
- 2 regulate are very dynamic than in the energy space.
- 3 They are constantly changing. Conversations that we
- 4 were having 15 years ago, some are still relevant.
- 5 Position limits comes to mind. Others we have moved
- 6 past, and we have built upon successes and lessons
- 7 learned. And so thank you all for being willing to
- 8 help us as we look at today's structure and today's
- 9 needs in the regulated derivatives markets such that we
- 10 can build upon our successes and complete the work that
- 11 is left yet to be completed. So thank you.
- MS. KNAUFF: Thank you, Commissioner Stump.
- Dena, I am going to turn the meeting over to
- 14 you now. Thank you.
- 15 CHAIRPERSON WIGGINS: Thank you. Thank you,
- 16 Commissioner Berkovitz, Mr. Chairman, and all of the
- 17 CFTC Commissioners, and also a special thanks to
- 18 Abigail for all that she has done to get us ready for
- 19 today.
- I am honored to be a Member of the EEMAC and
- 21 to continuing serving as the Chair of the EEMAC. The
- 22 committee serves as an important vehicle to discuss

- 1 matters of concern to exchanges, trading firms, end-
- 2 users, energy producers, and regulators within our
- 3 energy and environmental markets as well as the
- 4 Commission's regulations of these markets. A well-
- 5 informed regulatory environment that understands and
- 6 fosters open, transparent, competitive, and financially
- 7 sound energy markets is critical to our energy and
- 8 environmental derivatives markets. It is also critical
- 9 to the hedgers and consumers that rely on our markets
- 10 to power our homes and businesses, fuel our
- 11 transportation, and generate jobs and economic growth.
- 12 As Chair, I look forward to facilitating the
- 13 discussion today of Associate Members' perspectives to
- 14 the EEMAC and working with EEMAC Members to provide the
- 15 Commission with feedback and recommendations that
- 16 assist the agency in its oversight of the markets.
- 17 To ensure that our discussion today is
- 18 consistent with EEMAC charter, which prohibits
- 19 Associate Members from providing reports and
- 20 recommendations directly to the Commission, we will
- 21 first take questions and comments from the EEMAC
- 22 Associate Members after the panelists have made their

- 1 presentations and prepared remarks on each of the
- 2 panels. And then we will turn to the EEMAC Members for
- 3 their questions and comments on the panelists'
- 4 presentations, prepared remarks, and any feedback
- 5 provided by the Associate Members.
- So, with that out of the way, let's turn to
- 7 our first panel, which will provide a primer on the
- 8 recent evolution of environmental regulation and the
- 9 increased use of biofuels and renewable energy sources.
- 10 The panel will consist of statements from Tyson Slocum
- 11 of Public Citizen, Jenny Fordham of the NGSA, Sue Kelly
- 12 of APPA. And the primer will conclude with a
- 13 presentation by Vincent Johnson of BP Integrated Supply
- 14 and Trading. Tyson, we will begin with you.
- MR. SLOCUM: Great. Thank you so much,
- 16 Commissioner Berkovitz, for being such a great sponsor
- 17 of this committee and for all of the other members of
- 18 the Commission and especially to staff, who I always
- 19 enjoy working with so much, in helping to put this
- 20 together.
- 21 So it is remarkable what we -- in this
- 22 country and around the world, we are in the midst of a

- 1 disruptive transition in energy. And it is exciting to
- 2 be a part of it.
- 3 On the electricity side, there are really
- 4 three factors that are driving these disruptive changes
- 5 that we are seeing in power markets. In the United
- 6 States, it is access to cheaper natural gas because of
- 7 the explosion of hydraulic fracturing. It is the
- 8 result of increasingly inexpensive and abundant
- 9 renewable energy led by utility-scale wind and solar,
- 10 where prices continue to drop and are cost-competitive
- 11 or cheaper in many power markets in the United States.
- 12 And, finally, because of flatlining demand, essentially
- 13 since 2007, U.S. electricity demand has remained
- 14 relatively flat. And so without large annual
- 15 increases, there isn't as much pressure in many U.S.
- 16 power markets to bring on large new sources of
- 17 generation. And so these disruptive changes are
- 18 rendering a lot of existing baseload power,
- 19 particularly coal and nuclear, to become as, as those
- 20 industries call it, prematurely uneconomic. And so we
- 21 are seeing these changes, and they are happening fairly
- 22 rapidly.

- 1 On the transportation side, the
- 2 transportation fuel network is still almost all
- 3 petroleum, but we are starting to see changes based
- 4 upon market forces and consumer preferences and the
- 5 need to address climate change. But the transition in
- 6 transportation has been slower, and there are more
- 7 challenges, logistical and infrastructure challenges,
- 8 present. But just last year, a relatively smaller
- 9 automobile manufacturer by the name of Tesla pretty
- 10 much single-handedly shaked up the global auto-
- 11 manufacturing market when Wall Street and its stock
- 12 price was valued at higher market capitalization than
- 13 well-established and much larger rivals. And that is
- 14 because the market understood that the future of the
- 15 automobile is moving away from the internal combustion
- 16 engine and towards the electrification.
- 17 I think headwinds persist in these trends
- 18 that we are seeing in the electric power sector and
- 19 eventually what we are going to see in the
- 20 transportation sector towards cleaner renewable sources
- 21 of energy in the electrification and the transportation
- 22 sector. We are seeing persistent regulatory and market

- 1 barrier to the full deployment of some of these more
- 2 disruptive technologies.
- Now, on the electric power side, a lot of the
- 4 changes that helped bring renewable energy into the
- 5 marketplace were the nearly 30 states that had mandates
- 6 to utilities to produce or procedure a certain amount
- 7 of their electricity from renewable resources. And
- 8 these mandates created robust compliance markets for
- 9 tradeable renewable energy certificates. Now, some
- 10 states have been moving forward in response to Federal
- 11 inaction on climate change where states are assuming
- 12 more of a leadership mantle than we have seen in
- 13 Washington, D.C. and are implementing more aggressive
- 14 targets, some moving towards 100 percent renewable
- 15 electricity generation by certain targets. And so
- 16 while some of these compliance markets are growing,
- 17 absent a Federal mandate where we would have more
- 18 uniform REC markets and larger national standards, I
- 19 think there is going to be a cap on growth for some of
- 20 these.
- 21 And especially what we are seeing is some
- 22 pushback in the form of some Federal Energy Regulatory

- 1 Commission and regional transmission organization
- 2 proposals that are trying to counter the rise of
- 3 renewable energy. We have seen some specific market
- 4 proposals in New England and in PJM, which is the
- 5 largest market in the United States, stretching from
- 6 Illinois to here in Washington, D.C. And we have seen
- 7 formal proposals accepted by FERC in New England, for
- 8 example, that force what FERC and the RTOs call state-
- 9 sponsored energy resources, like renewables, to force
- 10 them to bid into capacity markets at a higher price
- 11 than they normally would because according to FERC and
- 12 these private market operators, the renewables are
- 13 unfairly bidding at cheaper prices.
- 14 There is a pending order for PJM that would
- 15 replicate what is going on in New England. And, in
- 16 addition, PJM is trying to put together something
- 17 called price formation, which would reorder dispatch to
- 18 move certain types of baseload coal and nuclear ahead
- 19 in the order, even if they submit higher bids than some
- 20 renewable energy. Some of that is being driven by
- 21 concerns that renewables don't offer the same
- 22 resilience or reliability attributes, but the fact of

- 1 the matter is, is that the impacts of these market
- 2 changes are having real impacts on slowing the growth
- 3 of renewable energy in our markets, even though they
- 4 are increasingly cheaper.
- 5 On the transportation side, while the longer-
- 6 term future is absolutely going to be a transition to
- 7 more electrification, in the meantime, congressional
- 8 mandates from 2005 and 2007 require oil refiners to
- 9 blend in certain amounts of biofuels into motor
- 10 gasoline, but this market recently has been quite
- 11 volatile.
- 12 And there are a number of serious problems
- 13 with the RIN market because of some actions taken by
- 14 the current administration that respond to concerns by
- 15 Carl Icahn and some other oil refiners that are forced
- 16 to purchase their needed RINs because they can't blend
- 17 the biofuels themselves. And this has led to
- 18 instability in the RIN market. And so the outlook for
- 19 biofuel and RIN market is limited long-term because as
- 20 we have more electric vehicles penetrating the market,
- 21 liquid petroleum and liquid biofuels are going to have
- 22 a shrinking share of market. But in the short-term, I

- 1 think some of the political instability introduced by
- 2 an inability to find a compromise between the ethanol
- 3 producers and the oil refiners that are doing the
- 4 blending is leading to some problems in the RIN market.
- 5 And while most people do believe that
- 6 electrification is the future, the rise of EVs is
- 7 contingent on the deployment of charging
- 8 infrastructure. And absent comprehensive Federal
- 9 action on climate change, right now most of the
- 10 activity to promote electrification infrastructure is
- 11 being done through state utility commissions, where
- 12 electric utilities have been offering to build into
- 13 their rate bases investments for charging stations. In
- 14 almost every state proceeding where this is happening,
- 15 representatives of the oil industry have intervened and
- 16 have opposed these efforts. And so the outcome for the
- 17 needed infrastructure investments is stymied by the
- 18 lack of Federal action but also the uncertainty due to
- 19 regulatory challenges that are happening at the state
- 20 level.
- 21 And so I think in order for the United States
- 22 to fully realize clean energy potential, we need to

- 1 have aggressive action at the Federal level to address
- 2 climate change. The science tells us that we have
- 3 to -- the 2007 Supreme Court decision Massachusetts v.
- 4 EPA doesn't give the Federal Government a lot of
- 5 options other than to regulate greenhouse gas
- 6 emissions. And I think only when we have got
- 7 comprehensive Federal action will we see
- 8 correspondingly robust environmental commodity markets.
- 9 I remember that in the wake of the passage of
- 10 the Waxman-Markey cap-and-trade legislation that passed
- 11 the House of Representatives in 2009, Goldman Sachs
- 12 produced a research report predicting that upon passage
- 13 and upon integration with existing cap-and-trade
- 14 systems in Europe and elsewhere, that emission trading
- 15 credit markets would become bigger than crude oil
- 16 markets globally. And so, obviously, that hasn't
- 17 happened, but we at Public Citizen continue to support
- 18 efforts to grow these environmental markets by having
- 19 robust Federal action on climate change.
- Thanks a lot.
- 21 CHAIRPERSON WIGGINS: Thank you, Tyson.
- Jenny?

- 1 MS. FORDHAM: Policies are being put into
- 2 place before key questions are asked. These policies
- 3 run the gamut, stemming from U.S. state legislative,
- 4 regulatory, and local actions, corporate actions in
- 5 global regulatory decisions, particularly those related
- 6 to financial markets.
- 7 In October 2019, Citi Global Perspectives and
- 8 Solutions Report identified two financial risks of
- 9 climate change: the risk of stranded assets and the
- 10 costs of doing nothing. These two risks have been
- 11 identified by many others over the last several years.
- 12 A third risk has yet to garner the attention, although
- 13 it is rapidly surfacing as climate policies emerge
- 14 around the world and in the United States. It is the
- 15 risk of no innovation.
- Before we dive in, let's start with what we
- 17 know. First, addressing climate change is a global
- 18 complex challenge that we all share. Second, we know
- 19 that companies are investing billions in research and
- 20 development, new technologies, and new assets. Third,
- 21 we know that these investment decisions are based on
- 22 the evaluation of many factors and viable alternatives.

- 1 Taking energy as an example, investment
- 2 considerations include load requirements; geographical
- 3 proximity; fuel availability; production
- 4 characteristics; capital and O&M costs; greenhouse gas
- 5 emissions; the asset's useful life; access to other
- 6 resources, like water; and the stage of the technology,
- 7 just to name a few. The point is this. Investment
- 8 decisions are based on many factors that are unique to
- 9 the investor and the investment. Importantly, these
- 10 factors are also unique to the point in time when the
- 11 decision is based, even though the investment decision
- 12 has an impact on the market for many years to follow.
- 13 Energy investment decisions made today will
- 14 impact subsequent energy investment decisions and
- 15 energy markets for decades. Like a pebble thrown into
- 16 a pond, there is a ripple effect.
- 17 Since the Paris Agreement, cities and states
- 18 representing more than half of the U.S. economy have
- 19 declared support. According to Bloomberg
- 20 Philanthropies, if these cities and states formed a
- 21 single country, its economy would be the third largest
- 22 in the world. Bloomberg Philanthropies also notes that

- 1 more than 1,000 businesses operating in the United
- 2 States and representing \$25 trillion in market
- 3 capitalization have voluntarily adopted greenhouse gas
- 4 emissions' reduction targets.
- 5 According to the Center for Strategic and
- 6 International Studies, 51 carbon pricing initiatives
- 7 exist today, covering 20 percent of global greenhouse
- 8 gas emissions. Further, more than half of U.S. states
- 9 have adopted renewable portfolio standards or fuel
- 10 source goals for their energy utilities. In some
- 11 instances, the fuel source goals are economy-wide,
- 12 extending beyond the energy utilities.
- 13 The Paris Agreement is intended to adjust the
- 14 flow of capital. Responding to the Paris Agreement,
- 15 the Financial Stability Board created the Task Force
- 16 for Climate-Related Financial Disclosures to develop
- 17 voluntary, consistent financial risk disclosures for
- 18 use by companies to provide climate-related risk
- 19 information to lenders, insurers, investors, and other
- 20 stakeholders. Since that time, several banks announced
- 21 changes to their lending portfolios. Development banks
- 22 adopted frameworks to screen assets for investment.

- 1 And corporate credit rating agencies announced plans
- 2 for how climate risks will be assessed.
- These actions, especially when viewed
- 4 alongside the growing trends of state laws and
- 5 regulations, share a common theme: a narrow focus on
- 6 carbon emissions with a prescription for those
- 7 investments that are to be deemed suitable. In some
- 8 instances, the investment prescriptions are intended to
- 9 drive a policy agenda. While investment decisions are
- 10 appropriately motivated by many perspectives, the risk
- 11 lies here.
- 12 Even with a variety of environmental goals,
- 13 different approaches, and time horizons, the targets
- 14 tend to focus on the year 2050. Although perspectives
- 15 differ on whether the year 2050 seems distant or near,
- 16 let's put 30 years into perspective by looking back at
- 17 natural gas markets. Within the last 30 years,
- 18 wellhead decontrol was adopted, paving the way for
- 19 market forces to establish the price for natural gas.
- 20 The natural gas market has weathered two gas-fired
- 21 power generation development booms, an industrial
- 22 sector recession, recovery, and growth. The size of

- 1 the physical natural gas market has nearly doubled.
- 2 And the U.S. has emerged as the world leader in the
- 3 production of natural gas.
- 4 In short, in the time span of less than 30
- 5 years, the most transparent and liquid physical
- 6 commodity market on the planet sprang to life. That is
- 7 a market that delivers \$85 to \$100 billion in physical
- 8 commodity market value to millions of customers in the
- 9 U.S. and abroad annually. Market-driven capital
- 10 allocation achieved these results.
- If the 1966 natural gas resource estimate had
- 12 remained static, the U.S. would have run out of natural
- 13 gas in 2005. Innovation made the thinking of 30 years
- 14 ago obsolete. Today, natural gas production is
- 15 geographically diversified and abundant, with natural
- 16 gas consumers having access to vast amounts of pricing
- 17 and fundamentals data on which to base a sound
- 18 investment decision. Natural gas paved the way for
- 19 electric power sector CO₂ emissions reductions below
- 20 1990s levels and more than \$100 billion in industrial
- 21 sector investments in the U.S. within the last decade
- 22 alone.

- 1 Just as diversity mitigates risk in a stock
- 2 portfolio and builds resisting companies, a diversity
- 3 of paths is key to attaining our world's environmental
- 4 objectives. Policies surrounding capital investments
- 5 are falling victim to conforming bias. Investment
- 6 decisions once based on a variety of competing market
- 7 factors are, instead, increasingly limited to a
- 8 prescribed list of acceptable technologies, a narrow
- 9 time window in the single perceived environmental
- 10 externality of carbon emissions.
- 11 As IHS described in an April 2017 report,
- 12 capital market distortions translate to energy market
- 13 distortions. As policies increasingly direct capital
- 14 investment based on a narrow set of criteria that is
- 15 informed by today's technologies, the underlying market
- 16 ceases to respond to the ever-changing and evolving
- 17 push and pull of competition and diversity of thought,
- 18 objectives, and alternatives.
- 19 We only need to look at the last 30 years to
- 20 understand the dramatic change that innovation borne of
- 21 competing and diverse ideas can create. Yet, today,
- 22 purse strings are held in the hands of prescriptive

- 1 capital investment policies that are replacing at
- 2 breakneck speed the existing rigorous and multifaceted,
- 3 diverse capital investment decisions. It is the
- 4 investment equivalent of putting all of our eggs into a
- 5 single basket.
- 6 Rules that stipulate and limit investment
- 7 also limit the market's ability to innovate. If
- 8 physical energy market investments are driven by a
- 9 predetermined narrow set of guidelines, instead of
- 10 competing ideas, how do we make sense of the underlying
- 11 market, and how do we assure that the markets are sound
- 12 for consumers? Perhaps even more importantly, if
- 13 investments are prescribed or channeled to a narrow set
- 14 of ideas, how does the market create game-changing
- 15 innovation? Do policies that channel investment
- 16 protect consumers from the market and from systemic
- 17 risk?
- The CFTC has a role to play. Systemic
- 19 financial risk is mitigated when commodity markets are
- 20 diverse and regulatory frameworks ensure that all our
- 21 eggs are not in a single basket. Yes, there is a
- 22 stranded-cost risk and the cost of doing nothing, but

- 1 there is another risk. The third financial risk of
- 2 climate change is the missed innovation stemming from
- 3 capital policies that override the market and narrowly
- 4 conform investment.
- 5 Thank you, Chairman Tarbert; Commissioners
- 6 Behnam, Stump, and Berkovitz. If energy investments
- 7 are driven by a predetermined view of what is
- 8 acceptable or not and physical market investments are
- 9 channeled by regulatory forces as if an umpire is
- 10 calling balls and strikes, both physical and financial
- 11 market distortions are inevitable. Sound financial
- 12 commodity markets stem from sound underlying physical
- 13 markets.
- 14 CHAIRPERSON WIGGINS: Thank you, Jenny.
- 15 And so we are going to turn it over to you,
- 16 but I also want to echo the comments that Commissioner
- 17 Berkovitz made earlier. We really will miss your many
- 18 contributions in the energy space. We appreciate
- 19 everything that you have done in this space in the last
- 20 however many years it has been that you have been
- 21 working in this area. And we wish you well in your
- 22 next phase, whatever that may be. Over to you.

- 1 MS. KELLY: Thank you so much.
- 2 On behalf of the American Public Power
- 3 Association, I appreciate the opportunity to speak to
- 4 public power's future focus in the face of changing
- 5 customer preferences and regulations. And I want to
- 6 especially thank Commissioner Berkovitz for both the
- 7 invitation and the kind words. I am going to choose to
- 8 accept "relentless" as a compliment. Thank you very
- 9 much.
- 10 The drive to reduce carbon emissions to
- 11 address climate change has caused public power
- 12 utilities, indeed all electric utilities, to support
- 13 electrification of new lows, such as transport, and to
- 14 diversify our generation resources with renewable
- 15 generation. One very practical reason we are doing
- 16 this is because the demand for electricity has been
- 17 flat or declining from traditional loads. So many
- 18 electric utilities see electrification as a way forward
- 19 in the future. From all-electric homes to electric
- 20 heating and transport, we are seeing new opportunities
- 21 for increased use of electricity while reducing overall
- 22 carbon emissions and saving money if we can do it

- 1 right.
- 2 The growth in use of electricity is hard to
- 3 predict. Forecast very widely, recent reports have
- 4 projected that in 30 years, anywhere from 8 to 80
- 5 percent of cars will be electric. That is a big
- 6 spread. Electric utility loads could grow anywhere
- 7 from 13 to 52 percent, also a wide spread. But even
- 8 the most conservative estimates show that growth and
- 9 demand will outpace any reductions from energy
- 10 efficiency.
- 11 Going forward, the Electric Power Research
- 12 Institute, or EPRI, believes that electricity demand is
- 13 expected to grow in most states, especially with
- 14 environmental policies and goals that are favorable to
- 15 electrification. But encouraging adoption of new
- 16 electric technologies requires a customer focus.
- 17 Public power utilities are reaching out to
- 18 our communities and promoting the use of electric
- 19 vehicles, heat pumps, and stoves. For example, my
- 20 association has negotiated a discount with Nissan on
- 21 the LEAF that is available to our utility members and
- 22 the retail customers of our utility members through

- 1 January 2, 2020. Hurry up and get it while you can.
- 2 Utilities are also working to better support
- 3 their commercial and industrial customers with
- 4 renewable generation, energy storage, microgrids, and
- 5 other new technologies. Many of these customers are
- 6 seeking renewable power and carbon reduction to support
- 7 their own corporate green strategies. And we need to
- 8 provide that. We need to be responsive to our
- 9 customers because they will find another way to do it
- 10 if we don't help them.
- 11 DOE's Energy Information Administration notes
- 12 that overall power sector CO₂ reductions declined 24
- 13 percent between 2005 and 2017. And I am proud to say
- 14 the public power CO₂ emissions have decreased 33
- 15 percent in that period. And we no doubt will do more.
- Many state environmental goals call for
- 17 increases in renewable energy sources, as has been
- 18 pointed out by the prior speakers. At this time, 29
- 19 states and the District of Columbia have a renewable
- 20 energy mandate. And five other states have a renewable
- 21 goal. Five states, including New York and California,
- 22 have goals to use 100 percent renewable energy and

- 1 achieve zero net carbon emissions by 2050.
- We know of at least 15 public power utilities
- 3 that have 100 percent renewable goals set locally. And
- 4 some have already reached those goals. Aspen,
- 5 Colorado; Burlington, Vermont; Greensburg, Kansas;
- 6 Rockport, Missouri are a few to announce that they have
- 7 met that goal.
- 8 But the move to incorporate greater
- 9 renewables into the power supply is not without
- 10 challenge. While the cost of wind and solar
- 11 technologies is certainly declining. They are not
- 12 always the lowest overall cost alternative, especially
- 13 when they have to be supplemented with other resources
- 14 to meet capacity requirements and resource adequacy
- 15 requirements.
- Some carbon-free sources, such as nuclear and
- 17 hydro, are not always viewed as clean in certain
- 18 quarters for portfolio requirement purposes. And,
- 19 therefore, some of the states' requirements exclude
- 20 nuclear and hydro. And this can lead for compliance
- 21 issues for utilities that are already fully sourced
- 22 with those kinds of carbon-free resources. And some

- 1 areas of the country are going to need a longer glide
- 2 path to get to a cleaner energy future because they
- 3 have historically relied on fossil fuels, such as coal
- 4 or natural gas.
- 5 So what does increased electrification
- 6 changing demand and changing generation mixes to what
- 7 you call commercial end-users? In our world, that has
- 8 a totally different meaning, but I am adopting your
- 9 terminology for today.
- 10 We use derivative products to hedge both our
- 11 ultimate physical product, electricity, and the price
- 12 of fuels that produce it, such as natural gas. And as
- 13 customer-owned utilities, public power utilities are
- 14 committed to keeping our rates reliable and affordable
- 15 and our communities thriving. Therefore, we will be
- 16 continuing to hedge fuel costs and electricity purchase
- 17 costs and financing costs in the form of interest
- 18 rates.
- 19 Our future demand for hedging products is
- 20 going to depend upon a number of factors that are very
- 21 hard to predict. As I noted, the overall demand for
- 22 electricity is projected to increase, but we don't know

- 1 by how much. Use of renewables with no actual fuel
- 2 cost to be hedged, such as wind and solar, is going to
- 3 increase, but power supply variability will also
- 4 increase from hour to hour, if not minute to minute, as
- 5 reliance on intermittent renewables increases. That is
- 6 a much harder job for us to manage as electric
- 7 utilities. This is going to require increased use of
- 8 flexible generation, such as natural gas-fired
- 9 generation, and demand-side resources that can ramp up
- 10 and down quickly to take into account intermittency on
- 11 the supply side.
- 12 Public power utilities will also have to
- 13 manage two-way flows because customers are going to
- 14 start to produce their own power and sometimes send
- 15 excess power to us on the grid, which we are going to
- 16 have to deal with. These changes are going to require
- 17 increasingly complex hedging strategies and potentially
- 18 new hedging products to maintain affordable electric
- 19 service to our retail customers.
- 20 So thank you again for the opportunity to
- 21 participate. And I stand ready to answer any questions
- 22 you might have or at least to attempt to do so.

- 1 Thank you.
- 2 CHAIRPERSON WIGGINS: Thank you, Sue.
- 3 Vincent?
- 4 MR. JOHNSON: Good morning. First, I want to
- 5 thank Commissioner Berkovitz for the opportunity to
- 6 have this discussion as well as the Chairman who left
- 7 and Commissioner Behnam and Commissioner Stump and
- 8 Abigail for all of your work in helping providing
- 9 guidance.
- 10 So as the world demands more energy to fuel
- 11 increasing prosperity and provide people with a better
- 12 quality of life, it also demands energy delivered in
- 13 new ways with fewer emissions. To support this
- 14 transition, there needs to be unprecedented
- 15 collaboration between governments, companies, and
- 16 markets, a so-called private-public partnership and,
- 17 crucially, realism about the challenges ahead. It
- 18 requires a transformation in the way energy is
- 19 produced, distributed, and used. The derivatives in
- 20 financial markets are vital because capital investments
- 21 measured in trillions of dollars over decades will be
- 22 necessary to finance both new sources of energy and to

- 1 adjust existing infrastructure.
- 2 The International Energy Agency has estimated
- 3 that up to \$53 trillion of investment is required by
- 4 2035 to meet projected energy demand within a critical
- 5 emissions framework.
- 6 Energy is such a key and perhaps
- 7 underappreciated driver of prosperity around the globe
- 8 that the practicalities of moving to a low-carbon and
- 9 greener economy will be challenging. But as part of
- 10 the development for low-carbon energy to reduce
- 11 greenhouse gas emissions, the U.S., Europe, Singapore,
- 12 China, among other nations, have developed emission-
- 13 trading schemes, some with related derivative contracts
- 14 to support carbon financing and carbon pricing.
- Renewables, many based on the traditional
- 16 derivative contracts, and something I will talk about
- 17 later, are now the fastest growing energy source in the
- 18 world today. So with the expected rise in energy
- 19 consumption over the next few decades and the need to
- 20 comply with environmental regulations due to low-carbon
- 21 transition, this means simultaneously there will be a
- 22 shift in the markets towards alternative energy

- 1 sources.
- Without a doubt, efficient derivative markets
- 3 will be a great help in making the right investments.
- 4 They help provide the right forward-looking price
- 5 signals, assess future volatility levels, and provide
- 6 instruments, now and in the future, to manage energy
- 7 exposure on both the production and consumption sides.
- 8 As new low-carbon energy products develop, the physical
- 9 products or underlying must be defined very exactly in
- 10 price formation must be the result of fairly active
- 11 trading to make derivative products viable to support
- 12 this low-carbon transition.
- I was going to mention in kind of switching
- 14 here -- and we have talked about projections. So I
- 15 have a slide on here. I don't know if it is going to
- 16 pop up here for the 2040 projections. And if you look
- 17 at this slide, if you took a baseline of 2017, in 2017,
- 18 the way we see it at BP, the energy mix, 34 percent was
- 19 oil, 23 percent natural gas, [and] 28 percent coal.
- 20 Then you have got a 4 percent on nuclear, 7 percent
- 21 hydrogen, 4 percent on renewables. If you go into the
- 22 evolving transition that we talked about where you

- 1 basically stay on the same path as we are on now, we
- 2 foresee a 7 percent increase in CO₂ emissions. And oil
- 3 gets reduced only down to 27 percent. Natural gas only
- 4 goes up to 26 percent. You reduce coal from 28 to 20
- 5 percent. Nuclear and hydro stay the same, but you do
- 6 have a 15 percent increase in renewables.
- 7 But if you go through the rapid transition --
- 8 and I think this is something that Tyson had
- 9 mentioned -- you go through a rapid transition, which
- 10 basically is following the Paris climate agreement, by
- 11 2040, you would have a reduction of oil to 23 percent.
- 12 You would have the natural gas still around 26 percent.
- 13 You would have a decrease in coal from 28 percent to 7
- 14 percent. You would have a slight increase in nuclear
- 15 and hydrogen, but the big increase would be renewables,
- 16 from 4 percent to 29 percent.
- 17 So next I was going to jump on and talk a
- 18 little bit about some of the products that are out
- 19 there that we at BP have been working on to help with
- 20 the low-carbon energy transition. So the first one is
- 21 biofuels. We talked about biofuels, converting biomass
- 22 directly into liquid fuels to help transportation fuel

- 1 needs. So one idea of it is that biofuels are being
- 2 produced from sugar cane, which has lifecycle
- 3 greenhouse gas emissions around 70 percent lower than
- 4 conventional transport fuels.
- 5 Another product is bio-isobutanol. It is an
- 6 alcohol produced from renewable organic material
- 7 including corn, wheat, and sugar cane. It can be
- 8 blended with gasoline at higher concentrations than
- 9 ethanol. And even in 2018, the EPA granted two
- 10 registrations to two companies to allow blending of 16
- 11 percent of bio-isobutanol into the gasoline pool. It
- 12 has a much lower carbon footprint, lower emissions than
- 13 regular fossil fuel gasoline.
- 14 The next one which is dear to my heart,
- 15 renewable diesel, something we have been working on.
- 16 So renewable diesel is the process where you can take
- 17 biomass-based feedstocks to create a much lower carbon
- 18 diesel. So what we have been working on is with
- 19 tallow. Tallow is cow fat. So we take what is left
- 20 over after you make the steaks, the hamburgers, and
- 21 stuff from cows, which would become waste. You take
- 22 that cow fat. You mix that into diesel. And you come

- 1 up with renewable diesel. What is the important part
- 2 about that is it has a 70 percent lower carbon
- 3 footprint compared with petroleum-based diesel. And it
- 4 is from a waste product. So that is something we are
- 5 doing. We are excited about that.
- And next I want to mention biojet. So, even
- 7 with biojet, we have been taking used cooking oil. And
- 8 you take -- and I will move the slide over if I can.
- 9 Thank you. Here is the slide for that one, but on
- 10 here, you see we are taking used cooking oil. You
- 11 collect it. You take the used cooking oil. And you
- 12 convert it to synthetic jet fuel. The synthetic jet
- 13 fuel is blended with standard aviation fuel to make it
- 14 suitable for aircraft. This biojet reduces greenhouse
- 15 gas emissions by more than 60 percent compared with
- 16 standard fossil jet fuel. And as emissions from
- 17 airlines is increasing -- and I noticed an article I
- 18 think on Tuesday in the Wall Street Journal about the
- 19 increased emissions from airlines -- and you can get a
- 20 60 percent reduction because of renewables, it works.
- 21 And I would also say this is in play because there are
- 22 three airports in Norway and Sweden that are using this

- 1 as well as Chicago O'Hare, one of the busiest airports
- 2 in the world.
- 3 Next slide. Another one I wanted to mention
- 4 is biogas. So biogas is produced from various organic
- 5 wastes, such as you see on the slide here you take
- 6 landfills. You take cow manure. You take the biomass
- 7 from corn. You take food waste. You take sewage.
- 8 This is a competitive renewable alternative to
- 9 conventional fuels.
- 10 And what biogas is, there is a biogas that is
- 11 processed. And it is processed, and it is purified to
- 12 become pipeline-quality biomethane, which is known as
- 13 renewable natural gas. You take that renewable natural
- 14 gas, and you compress it or liquefy it. And you send
- 15 it to a fuel pipeline grid. And from there, you take
- 16 the renewable natural gas, and you route it to
- 17 compressed natural gas or liquid natural gas commercial
- 18 fueling stations. So you will see. You will see in
- 19 Washington, D.C. You will see in New York. You will
- 20 see a ton of them. In California, you will see these
- 21 natural gas buses. And they are running off of natural
- 22 gas, and they are running off of this renewable natural

- 1 gas. And, again, it is a way to lower the carbon
- 2 footprint.
- Now, the potential for biogas production is
- 4 significant. Nationwide, there are over 2,400
- 5 municipal solid waste landfills. Only 632 currently
- 6 have operational landfill gas projects. The EPA states
- 7 that there are an additional 470 sites that are good
- 8 candidates for landfill gas projects to produce biogas.
- 9 Another, there are over 17,000 wastewater
- 10 treatment facilities. Only 1,200 wastewater treatment
- 11 facilities have either anaerobic digesters on site or
- 12 send their waste to an alternate location for
- 13 aggregation and digestion to make biogas production, so
- 14 a long way to go there. And, in addition, biogas
- 15 recovery systems are technically feasible at over 8,000
- 16 large dairy and hog operations in the U.S. However,
- 17 currently only 260 agricultural facilities have
- 18 operational anaerobic digesters. So, again, if you
- 19 see, there is a great room to grow and help produce
- 20 biogas with the less carbon footprint.
- The last thing I want to mention is MARPOL.
- 22 Now, for those who do not know, MARPOL stands for

- 1 marine pollution. MARPOL came about in 1973, but the
- 2 MARPOL Convention, this slide here, there was a MARPOL
- 3 Convention that was amended in 1997 to address sulfur
- 4 emissions from ships by introducing a global cap on
- 5 sulfur content of marine fuel oil.
- 6 So effective January 1, 2020, the United
- 7 Nations International Maritime Organization will
- 8 require all ships to switch from fuels with 3.5 percent
- 9 sulfur content to fuel that contains no more than 0.5
- 10 percent sulfur content or have so-called scrubbers
- 11 installed in the exhaust stacks that strip the sulfur
- 12 from emissions. As a result, the International Energy
- 13 Agency forecast that the demand for high-sulfur fuel
- 14 oil will fall by more than 2 billion barrels a day next
- 15 year. The change is expected to boost demand, instead,
- 16 for cleaner fuel, including marine gasoil, a distillate
- 17 akin to diesel and low-sulfur fuel oil.
- 18 As part of this and as is going to be
- 19 discussed further today, this is not possible without
- 20 the futures exchanges launching contracts to kind of
- 21 help support the financing of low-sulfur fuel marine
- 22 oil.

- 1 And, finally, implementation of this latest
- 2 stage of MARPOL Convention we believe will reshape the
- 3 marine fuel landscape. As well, we hope it helps lead
- 4 to lower-carbon fuel in other, whether it is
- 5 transportation or whether it is airlines, to reduce the
- 6 footprint.
- 7 Thank you.
- 8 CHAIRPERSON WIGGINS: Thank you. Thank you
- 9 all for your presentations.
- I would like to open the floor now for
- 11 questions and discussions regarding the panelists'
- 12 remarks and presentations. And we are going to begin
- 13 with questions and comments from the Associate Members
- 14 of the EEMAC to the Members of the EEMAC. And, again,
- 15 as Abigail said earlier, if you would like to be
- 16 recognized, if you would turn your tent card up, and we
- 17 will see how we can go here. Jim, would you like to
- 18 begin?
- MR. ALLISON: Thank you.
- The question I think is first for Tyson, but
- 21 I think each of the panelists spoke to the issue. And,
- 22 Tyson, if you will excuse me turning back. So it is

- 1 either you or the microphone. Tyson spoke about the
- 2 technological developments we have seen to date in
- 3 generation and transmission. To that, let me add
- 4 industrial-scale storage.
- 5 I would like to think about how the
- 6 technologies are going to develop into the future
- 7 because when I think about the future of the
- 8 technological developments, I see this cloud of
- 9 uncertainty about how those technologies might develop.
- 10 And it is unclear to me what development path I would
- 11 prefer and what development path I would predict.
- 12 Those are two different things.
- So, Tyson, what is your view on the
- 14 uncertainty about those future technological
- 15 development paths? And how should that uncertainty
- 16 affect regulatory philosophy going forward?
- 17 MR. SLOCUM: Great question. So I think if
- 18 you talk to anyone in industry, especially in the
- 19 electric power industry, where you have got capital
- 20 investments that are supposed to last a significant
- 21 amount of time, they need guidance in the form of
- 22 regulatory certain about how to make those investments.

- 1 And right now on environmental and climate change, we
- 2 have no regulatory certainty. Right? We have had very
- 3 modest programs that were put together by the Obama
- 4 Administration on the electric power side, the Clean
- 5 Power Plan, which was a compromise among environmental
- 6 goals and what utilities thought that they could
- 7 achieve.
- 8 And almost every utility was publicly quoted
- 9 as saying, "We can work with this program." And then
- 10 that was the regulatory program that the Obama
- 11 Administration then was able to successfully negotiate
- 12 the Paris Climate Accord, which, if you remember, was a
- 13 voluntary system, which is why it didn't need Senate
- 14 ratification under the Constitution because it placed
- 15 literally no binding elements on U.S. participation.
- So my point here is that we had a plan for
- 17 the electric power sector that was modest in scale,
- 18 that the utility industry felt that was achievable and
- 19 that would quide their investments for the next
- 20 generation or two, and it was scrapped by the current
- 21 administration.
- 22 And right now the industry is reeling. They

- 1 have no guidance from the Federal Government. They are
- 2 dealing with multiple different state initiatives.
- 3 Their desire is to see uniform Federal action. And
- 4 what would be helpful would be to hear more companies
- 5 talk about the fact that we need more Federal action
- 6 because too often, in my conversations in Washington,
- 7 D.C., industry is either denied that climate change is
- 8 a problem or actively funded efforts to stop modest
- 9 activities to address climate change.
- 10 So I think, to answer your question, the
- 11 investments we need to see are going to have to be
- 12 guided by Federal regulations or programs. And right
- 13 now, we don't have those. And so we are in a state of
- 14 flux that I don't think serves anyone's interests
- 15 productively.
- I don't know if that answers your question.
- 17 MR. ALLISON: It answers my question. And
- 18 your answer seems to me in sharp contrast with some of
- 19 the points that Jenny made during her presentation. So
- 20 I would be interested in hearing whether the other
- 21 panelists have comments on the same question.
- MS. FORDHAM: So I will give a perspective.

- 1 I think we are seeing a lot of different actions
- 2 related to climate. Right? So companies are taking
- 3 matters into their own hands along with state and local
- 4 regulators, financial market regulators.
- 5 And to answer your question, Jim, the -- I
- 6 think it is going to be really hard for a regulator to
- 7 pick the right technology. And the real risk that we
- 8 have stems from this prescriptive approach that is
- 9 being laid out. And so the concern I have is
- 10 without -- you know, figuring out where we are 30 years
- 11 from now becomes really difficult if everyone is
- 12 calling balls and strikes on investment decisions based
- 13 on today's knowledge. And channeling, you know,
- 14 sending all of our dollars, or our eggs, into this
- 15 single basket based on today's view I think is risky.
- 16 So I think one of the biggest challenges we have is in
- 17 having a framework that allows this diversity of
- 18 thought and innovation to really continue to be at play
- 19 in the marketplace. And without it, there is vast risk
- 20 to market participants as well as risk to derivatives
- 21 markets that are the ultimate connector of all of these
- 22 physical markets that are today very interrelated.

- 1 CHAIRPERSON WIGGINS: Matt, I saw your card
- 2 up next, but, Sue, are you going to participate in that
- 3 part of the conversation? Matt, if you don't mind, we
- 4 will go to Sue. And then we will go to you if that is
- 5 okay.
- 6 MS. KELLY: Thank you.
- 7 I want to kind of bridge the gap between
- 8 Jenny and Tyson a little bit. It is true that there
- 9 has been Federal uncertainty, but it is not so much
- 10 that there has been nothing. It is just there has been
- 11 this whole series. You know, we had Waxman-Markey.
- 12 That did not happen. Then we had the Clean Power Plan,
- 13 where the EPA set our energy policy. That got
- 14 appealed. I lost a bet when the Supreme Court stayed
- 15 it.
- 16 Then we had a new administration. Then the
- 17 Clean Power Plan is gone. Now we have the affordable
- 18 clean energy rule. That is now in court. When we look
- 19 at this, it is really hard to plan where you are going
- 20 to go when you see this. Every two or three years,
- 21 there is a flip.
- 22 So we would like some certainty. That is

- 1 absolutely true. But I would also say that we would
- 2 like to have -- if there is a Federal policy, we would
- 3 like it to be in terms of what we need to do, not how
- 4 we need to do it, because I do believe that there is
- 5 room for new technologies.
- And, also, different regions have different
- 7 strengths and different current resource mix to bring
- 8 to the table. If you go to the Pacific Northwest,
- 9 there is a huge amount of hydro that our members have.
- 10 It is a clean renewable resource. It can back
- 11 intermittent renewables. I mean, I call it the Rodney
- 12 Dangerfield of renewable resources. It gets no
- 13 respect. So, I mean, each region has a different
- 14 resource mix. And we want to be able to work forward
- 15 to meet our carbon goals, whatever they may end up
- 16 being. But we need the diversity, and we need the
- 17 flexibility to do it in the way that maintains
- 18 reliability and maintains affordability. So to me, it
- 19 is really important. I guess if I left you with a
- 20 bumper sticker, it would be "What, not how."
- 21 CHAIRPERSON WIGGINS: Matt?
- MR. PICARDI: Yes. Thank you to the panel, a

- 1 very nice setup for the discussion today. I am Matt
- 2 Picardi for the Commercial Energy Working Group.
- 3 Associate Member, by the way. I think I forgot to
- 4 announce that in the beginning. I apologize.
- 5 Interesting discussion. I kind of wanted to
- 6 maybe step back a little bit from one of the
- 7 discussions in terms of some of the organized markets
- 8 where some of the issues I think that Tyler (sic.)
- 9 raised have been touted for a while as having saved
- 10 consumers a lot of money in terms of the way they have
- 11 operated. And they were kind of set up, if we recall,
- 12 under the proposition that a megawatt is a megawatt.
- 13 And so now we have a situation where the fuel mix is
- 14 changing. And I think you have touched on all of the
- 15 great points about why we have had these problems.
- But my question is, do you think it is the
- 17 job of which agency? Is it the FERC, whose job is to
- 18 administer markets and make sure rates are just and
- 19 reasonable to start getting involved with some of these
- 20 issues, or should they just be looking at technical
- 21 issues about what makes markets work and what is best
- 22 for consumers?

- 1 MR. SLOCUM: Great questions. So, first and
- 2 foremost, I think we need to understand that the
- 3 Federal Energy Regulatory Commission has delegated a
- 4 lot of its authorities and responsibilities to these
- 5 private regional transmission entities, who, in turn,
- 6 have developed really complex internal, what they call
- 7 stakeholder processes, where within these internal
- 8 stakeholder processes of the private markets, these
- 9 market reform proposals are developed, deliberated, and
- 10 voted upon. And the problem is, is that there is
- 11 little to no transparency with this process.
- 12 Groups like mine actually are banned from
- 13 voting within PJM; whereas, owners of power plants and
- 14 transmission lines are free to actually cast multiple
- 15 votes according to how many subsidiaries they have at
- 16 the table. So it is not a democratic process. And so
- 17 it shouldn't be a surprise that the resulting market
- 18 designs coming out of this convoluted privatized
- 19 process is not producing just results. So I think,
- 20 first and foremost, Federal regulators need to get a
- 21 much clearer and bolder set of activity to more
- 22 directly oversee this process.

- I do think that market reforms can benefit
- 2 consumers and market participants if we have all people
- 3 equally seated at the table. And right now the way
- 4 that our electric power markets are being designed and
- 5 developed, that is not the case at all. It is whoever
- 6 can hire the most lobbyists and pull together the most
- 7 votes in this sort of behind-closed-doors situation.
- 8 So it is kind of a crazy situation that we find
- 9 ourselves in the United States, where policy is being
- 10 driven by organizations that most Americans have never
- 11 even heard of. And so we need transparency and
- 12 accountability in that process. And so I think we
- 13 could do it if FERC takes more of a direct role in
- 14 doing this comprehensively.
- I don't know if that answers your question.
- 16 CHAIRPERSON WIGGINS: Jenny?
- MS. FORDHAM: I will take a stab at this. So
- 18 I think you asked the million-dollar question. Which
- 19 agency takes the lead or where does this rest? And
- 20 that is really part of the challenge of all of this.
- I laid out what I see as a systemic risk
- 22 issue, but it crosses. The reason it has been such a

- 1 challenge for us over the last several years to get our
- 2 head around it is because it crosses environmental
- 3 products, energy markets, you know, gas, electric.
- 4 There is an investment component. There is a financial
- 5 risk, an insurance element to it. It crosses so many
- 6 different agencies.
- 7 I think derivatives markets is perhaps --
- 8 that is where some of this can start to come together
- 9 in the financial space, but that is the ultimate
- 10 challenge. I mean, markets are messy. Right? We are
- 11 seeing it evolve right now. And when they are
- 12 evolving, do they evolve and say, "Hey, I am going to
- 13 be FERC-jurisdictional" or "I am going to be CFTC-
- 14 jurisdictional." No. It is messy. And the market
- 15 sorts it out. And I think that is part of the
- 16 challenge that we have, but I think one of the key
- 17 issues relates to this channeling of investment and
- 18 what that does to systemic risk.
- 19 Senator Murkowski actually issued a
- 20 discussion draft kind of flagging this issue for
- 21 Treasury a few months ago. But, anyway, I see it as
- 22 systemic risk.

- 1 CHAIRPERSON WIGGINS: Sue?
- MS. KELLY: I just want to briefly add that I
- 3 think you said something really important. Right now,
- 4 the wholesale markets that -- they call them organized
- 5 markets. That drives me crazy because it implies that
- 6 every other market is disorganized. So I am going to
- 7 call them centralized in the same style as the Soviet
- 8 five-year plan was centralized, but I would just note
- 9 that those markets treat every megawatt as fungible
- 10 with every other megawatt. That is the way they were
- 11 designed when they came in. And, as we now know,
- 12 especially if you are putting an environmental lens on
- 13 this, not every megawatt is created equal. And each
- 14 one has different attributes. And that requires much
- 15 more mixing and matching than we had in the past. So
- 16 thank you for making that very valid point.
- I am hampered by the fact that I was a
- 18 Federal Power Act lawyer for many years. And that says
- 19 generation is not in FERC's purview. They do
- 20 transmission interstate commerce and sales for resale.
- 21 So the choice of the generation mix is really
- 22 not a FERC jurisdictional activity. It has become that

- 1 through the back door because of the operation of some
- 2 of these centralized markets.
- 3 The other thing is, is that those markets
- 4 don't support a diversity of business models. And we
- 5 have found that out the hard way because our model is
- 6 still bundled in regions of the country such as PJM in
- 7 New England, where most other entities are unbundled.
- 8 And, as a result, we have been accused of subsidizing
- 9 our generation resources because of our business model.
- 10 So I would just note that there are a lot of
- 11 issues with those markets. And there are some
- 12 jurisdictional questions about them as well.
- 13 CHAIRPERSON WIGGINS: Sean?
- MR. COTA: I, too, forgot to mention that I
- 15 was an Associate Member of the group.
- My industry is rapidly going to renewable
- 17 fuels. And the dilemmas that we have are the dilemmas
- 18 of what are standards. And we generally know what a
- 19 megawatt is. We generally know what a gallon is or a
- 20 bushel or a metric ton. When you are talking about
- 21 CO₂E -- right? -- greenhouse gas, carbon dioxide
- 22 equivalence because different gases have different

- 1 impacts, there are standards, but there are about 10 of
- 2 them currently. And there is no consensus from state
- 3 to state or regulatory entity to regulatory entity
- 4 about which standard you use for measuring what the
- 5 cost is. So if you are talking about introducing for
- 6 the first time in the world markets carbon as a cost,
- 7 well, what carbon are you talking about? And what is
- 8 the impact?
- 9 So, for example, in some markets, hydro
- 10 plants that were built many years ago do not qualify as
- 11 a renewable fuel. Right? But new ones do. That is
- 12 just one of the weird aspects you get. In different
- 13 liquid fuels, you measure the different contents
- 14 differently. Right? Renewable diesel, as an example,
- 15 is fungibly pretty close to the regular diesel to the
- 16 point where you have to actually measure the
- 17 radioactivity of the carbon in it to determine whether
- 18 or not it is renewable or not. Right? So it is great
- 19 in one side. And the other side really is often how do
- 20 you measure what those impacts are? What is the
- 21 source? Did it come from a full waste product? Did it
- 22 come from a product that would be mostly waste? So all

- 1 of these different methodologies go into what the
- 2 scoring mechanisms are, which then gets built into the
- 3 pricing mechanism.
- 4 So my question for the experts -- and this is
- 5 I think one of the thorniest problems -- is we have
- 6 every state and every regulatory entity coming up with
- 7 their own standards. How do we get to a standard?
- 8 CHAIRPERSON WIGGINS: And if I could ask the
- 9 panel to keep your answers pretty brief because we have
- 10 one more Associate Member comment. I want to make sure
- 11 that we stay on time here.
- MR. SLOCUM: I have already said that I think
- 13 the preferred path forward is to have a Federal
- 14 approach on addressing climate change. And that would
- 15 put together national uniform standards for the kinds
- 16 of things you are talking about.
- 17 CHAIRPERSON WIGGINS: Vince?
- 18 MR. JOHNSON: I was just going to quickly say
- 19 I completely agree with your comments. And, as Tyson
- 20 said, you have a Federal program, but you have
- 21 something like with the RFS, you had a Federal program.
- 22 And that seems to have fallen apart.

- I think last Friday, I was in the Court of
- 2 Appeals here in D.C. listening to an argument about the
- 3 whole small refinery exemptions, but I think we look at
- 4 it as it would be nice for a Federal program, but we
- 5 are trying to take advantage of what the states are
- 6 doing. You have cap-and-trade and LCFS in California,
- 7 and you try to use those to help finance. A lot of
- 8 small companies are trying to finance that. You have
- 9 Oregon, State of Washington. You had the RGGI in the
- 10 Northeast. And you have this new transportation carbon
- 11 initiative coming out of Northeast. So it is a
- 12 hodgepodge, and it takes a lot of resources. But I
- 13 think from the -- we hope to get there, a Federal
- 14 program but just trying to take advantage of what is
- 15 out there and see how it works.
- 16 CHAIRPERSON WIGGINS: Sue?
- MS. KELLY: I will just say I share your pain
- 18 about the hydro. It makes no sense to me why existing
- 19 hydro doesn't and new small hydro does. And, again, I
- 20 would try, if possible, to stay out of the definitional
- 21 battles and go to what kind of reductions do you want
- 22 us to achieve in what timeframe and let us figure out

- 1 how and with what resources.
- 2 CHAIRPERSON WIGGINS: Jenny?
- 3 MS. FORDHAM: I think the environmental
- 4 products markets, the financial markets can be the link
- 5 between all of these different goals.
- 6 CHAIRPERSON WIGGINS: Erik?
- 7 MR. HEINLE: Thank you. I will be real
- 8 brief. Erik Heinle, D.C. OPC.
- 9 I want to hit back on something that Sue
- 10 said. And she made a really good point that under the
- 11 FPA, states and districts have the right to choose
- 12 their generation makeup. And that is not a FERC
- 13 responsibility. That is a state responsibility. And
- 14 states have the right to develop RPSs and so forth.
- 15 Many of us have chosen to join these organized markets,
- 16 and these are common markets. And, as Tyson said
- 17 earlier, it has led to some friction, especially with
- 18 capacity markets.
- 19 And so I wanted to see what you all thought,
- 20 ways that, say, environmental derivatives, energy
- 21 derivatives could sort of ease that friction between
- 22 state policy preferences, which are guaranteed under

- 1 the FPA, and sort of still meeting some of these common
- 2 market goals.
- 3 MS. KELLY: I don't necessarily think that
- 4 those products can remedy the fundamental problem.
- 5 That would be just another Band-Aid in a long series of
- 6 Band-Aids. I think there needs to be fundamental
- 7 reform of those markets. And we have a proposal. I am
- 8 just like Elizabeth Warren. We have a plan. So I am
- 9 happy to talk to you about that offline.
- 10 CHAIRPERSON WIGGINS: Commissioner?
- 11 COMMISSIONER BERKOVITZ: Thank you.
- I just had a follow-up question for Vince.
- 13 You mentioned the marine fuel and the MARPOL and said
- 14 that the derivative market there was absolutely
- 15 necessary for the success of that transition. I was
- 16 wondering if you could just expound on that. The last
- 17 question -- it is a much bigger question than we have
- 18 time for in a couple of minutes -- is like, what value
- 19 is derivatives markets? Many of the markets we are
- 20 talking about, there are not derivative markets. There
- 21 is a lot of regional markets and incentives. And we
- 22 don't have derivatives in a lot of these environmental

- 1 markets. But you specifically mentioned that the
- 2 derivatives market was integral to the success of this
- 3 product. And I was wondering if you could just expand
- 4 on that. And why is that?
- 5 MR. JOHNSON: Thank you, Commissioner
- 6 Berkovitz.
- 7 And I will be short here. So we have the
- 8 derivative markets, the future contracts on I would say
- 9 the high-sulfur fuel oil that is out there. I mean,
- 10 for basic hedging, we are moving ships across the
- 11 globe. And you are locking in prices and all the
- 12 components to blend that. Because of the derivative
- 13 markets and working with the industry to create
- 14 additional contracts for the low-sulfur fuel oil, that
- 15 kind of helps as we prepare for January 1, 2020 and the
- 16 buildup of low-sulfur fuel oil, allowing companies like
- 17 BP to hedge that marketplace and, really, more just a
- 18 traditional trading I would say mechanisms. That goes
- 19 along with just whether it was RBOB, whether it was
- 20 crude oil. You have companies that like to lock in the
- 21 price. We like to lock in the components. And we can
- 22 kind of prepare where we have been preparing for six

- 1 months looking at the market to see supply/demand
- 2 curves and where it is going to go. And we lock in --
- 3 I don't know if it helps, but it is just that whole
- 4 traditional part. We want to hedge that product and we
- 5 want to lock in those prices.
- 6 And if you didn't have the derivative
- 7 markets, I don't think it would have moved forward
- 8 because it would have stuck with the high-sulfur fuel
- 9 oil and maybe used the scrubbers that I mentioned. But
- 10 because of the derivative markets, I think a lot of the
- 11 energy companies supplying marine fuel felt more
- 12 comfortable in moving forward with the low-sulfur fuel
- 13 oil in going from your kind of traditional operations.
- 14 CHAIRPERSON WIGGINS: Do we have any comments
- 15 or questions from people on the phone? There is at
- 16 least one Associate Member on the phone.
- MR. McKONE: No, I have no questions. Thank
- 18 you.
- 19 CHAIRPERSON WIGGINS: Okay. Thank you. All
- 20 right.
- 21 MR. JOHNSON: Can I say one other thing?
- 22 Sorry.

- 1 CHAIRPERSON WIGGINS: Sorry.
- 2 MR. JOHNSON: I'm sorry. It is also the --
- 3 and I mentioned this. The derivative markets also help
- 4 with the price signals for when you have that market
- 5 out there and what everybody will be paying for that
- 6 product when you get to January, February, March, down
- 7 the road. So we have our analytics team. And they are
- 8 advising the traders for that market that those price
- 9 signals are a big component of the way we trade.
- 10 CHAIRPERSON WIGGINS: Thank you.
- 11 Do we have any Members who would like to
- 12 raise a question or make a comment? Please? Go ahead.
- MR. DURKIN: Just to add on -- and it is
- 14 Bryan Durkin. I am also a Member of the Committee. I
- 15 failed to mention that -- I apologize -- earlier. But
- 16 to follow on to Vincent's comments, we working with the
- 17 community have developed and have been working on
- 18 products to address the International Maritime
- 19 Organization sulfur fuel standards that take effect in
- 20 2020. So we do offer a slate of ultra low-sulfur fuel
- 21 contracts to allow risk management to occur in
- 22 anticipation of these requirements taking effect. And

- 1 our recent launch of products has been of smaller
- 2 contract sizes to enable a variety of different market
- 3 participants to effectively hedge and have an
- 4 opportunity to hedge in this evolving standard. So I
- 5 think it goes to the innovation, all of us working
- 6 together identifying solutions to these issues that we
- 7 are confronting. And I just wanted to underscore the
- 8 importance of what is happening in this committee
- 9 today.
- 10 CHAIRPERSON WIGGINS: Please? Go ahead.
- 11 MR. CREAMER: Rob Creamer. I also failed to
- 12 mention I am a Member as well.
- So I just wanted to make a comment on
- 14 markets. And we certainly interact in the markets that
- 15 you are hedging in as liquidity providers. One area of
- 16 frustration to me and I think many others in our
- 17 industry could be seen in the RIN market. The
- 18 interrelationships between the various products that we
- 19 trade and how we actually hold an inventory risk has
- 20 this variable out there that is an opaque market that
- 21 we can actually transact in. And so we would build in
- 22 inventory large positions in these products and have a

- 1 very opaque market that is not heavily traded that
- 2 would define the price of what was very liquid vital
- 3 markets.
- 4 And I would just throw it out as a comment
- 5 that I think the market model and market instruments
- 6 are very important, but I think that there should
- 7 always be a focus on making sure that those markets are
- 8 transparent and accessible and as liquid as they
- 9 possibly can be.
- 10 CHAIRPERSON WIGGINS: Any other comments from
- 11 the EEMAC Members?
- [No audible response.]
- 13 CHAIRPERSON WIGGINS: Hearing none and seeing
- 14 no cards turned up, I want to thank the first panel for
- 15 your comments and participation. I really appreciate
- 16 you all being here. And we will excuse you and call up
- 17 the second panel, please.
- 18 [Pause.]
- 19 CHAIRPERSON WIGGINS: Thank you very much.
- 20 Let's turn to our second panel, in which we will hear
- 21 an overview of exchange-traded environmental
- 22 derivatives. Daniel Scarbrough of IncubEx will present

- 1 on the historical development of environmental markets
- 2 and current environmental derivatives products listed
- 3 on IncubEx's partner, Nodal Exchange. Michael
- 4 Kierstead will present on environmental products listed
- 5 by Intercontinental Exchange. And Dr. Richard Sandor
- 6 will present on the market evolution of new products
- 7 with a focus on environmental markets.
- 8 With that, I will turn this over to Dan.
- 9 MR. SCARBROUGH: Hi. Thank you, everyone.
- 10 Thank you to the Commission and also to the Energy and
- 11 Environmental Markets [Advisory] Committee.
- My name is Dan Scarbrough. I am Co-founder
- 13 and President of IncubEx. I have been in the
- 14 environmental markets derivatives space for the last 14
- 15 years, starting with working with Richard Sandor at the
- 16 Chicago Climate Exchange, later at the Intercontinental
- 17 Exchange as Climate Change was acquired in 2010 and
- 18 most recently with IncubEx.
- 19 Really, today, just quickly about IncubEx.
- 20 We are an incubator for exchange-traded products with a
- 21 focus on global environmental markets. We work in
- 22 conjunction with our partners, both exchanges [and],

- 1 technology service providers, to develop and innovate
- 2 new financial products. We partnered with the EEX
- 3 Group in 2017, including Nodal Exchange. And I would
- 4 like to thank our partners at Nodal Exchange for
- 5 including us here today in this conversation.
- 6 Our team is comprised of many of the former
- 7 Climate Exchange executives and was founded in 2016.
- 8 We have offices in Chicago and London. Actually, it
- 9 seems a little bit awkward for me to talk about the
- 10 history of environmental markets when we actually have
- 11 one of the pioneers of the environmental markets here
- 12 on the panel, Dr. Richard Sandor, but I think what we
- 13 would like to achieve here is just to give you a little
- 14 bit of context about the environmental markets over the
- 15 last 60 years and, in particular, the last 15 years as
- 16 the markets have really developed and expanded on a
- 17 global basis. And a lot of this really dates back to
- 18 Dr. Ronald Coase's theory of social cost in 1960 and
- 19 some of the principles that were adopted in some of the
- 20 later environmental markets, really probably most
- 21 notably starting with the Acid Rain Program of 1990,
- 22 adopted under the Clean Air Act amendments that year, a

- 1 very successful environmental program addressing acid
- 2 rain, and really set the precedent for global expansion
- 3 of environmental markets and the proliferation of cap-
- 4 and-trade as a successful policy tool to address
- 5 environmental issues.
- In the last 15 years, we have obviously seen
- 7 the markets expand quite rapidly. Carbon as an asset
- 8 class going back to 2003 on a voluntary basis, Chicago
- 9 Climate Exchange, where you had over 400 members that
- 10 actually took a voluntary reduction commitment of their
- 11 greenhouse gas emissions before it was federally or
- 12 state-mandated on a mandatory basis. And then with the
- 13 implementation of the E.U., European Union, emission-
- 14 trading scheme in 2005, we saw the first mandatory cap-
- 15 and-trade program for carbon and phase I of that
- 16 program commencing in 2005.
- I think, as was previously mentioned, the
- 18 renewable fuel standard dates back to 2005 as well
- 19 under the Energy Policy Act and was expanded again
- 20 under the RFS2 in 2008. We saw the California cap-and-
- 21 trade system evolve under A.B. 32 in 2006. As many of
- 22 these environmental markets do, it took significant

- 1 time for that market from the time of legislation,
- 2 regulation, to program implementation, as we saw the
- 3 first compliance year in California really starting in
- 4 2013, due to start in 2012 and ended up starting in
- 5 2013. So many of these markets take significant time
- 6 to develop based on the underpinning of regulatory
- 7 policy and legislation required to enact these markets.
- 8 On the REC market side, or renewable energy
- 9 certificate, market really predicated based on the
- 10 previously mentioned 29 states plus D.C. that actually
- 11 have renewable portfolio standard programs in place,
- 12 the tradeable instruments behind those programs are the
- 13 REC, renewable energy certificates. In total, they are
- 14 probably approaching 100 different REC markets in the
- 15 United States right now. Only a subset of those are
- 16 traded on exchange. And we will talk about some of
- 17 those in a minute.
- Really, again, we think that, obviously, many
- 19 of these environmental markets look to previous
- 20 programs and some of the successes that have been
- 21 achieved, most namely the Acid Rain Program. This
- 22 chart does a good visual depiction of the elimination

- 1 of acid rain, which in large part was due to the
- 2 market-based mechanism of the Acid Rain Program of
- 3 1990.
- 4 Just really generally on the growth of
- 5 environmental markets and what we have seen and sort of
- 6 the global landscape at the moment, approximately three
- 7 billion tons of carbon emissions are currently covered
- 8 under an emission-trading scheme at the moment relative
- 9 to roughly 40 billion tons of global carbon emissions.
- 10 So although we have significant tons under emissions-
- 11 trading schemes, the opportunity for expansion of those
- 12 programs is certainly there.
- 13 Again, we have a federally mandated renewable
- 14 fuel standard, which creates a standard for ethanol and
- 15 other biofuels. The underpinnings of that and, really,
- 16 the tradeable instruments are, as Rob mentioned I
- 17 believe earlier, the renewable identification numbers,
- 18 or the RIN, markets, really dating back to being
- 19 actively traded since 2008.
- 20 On the exchange side, really, product
- 21 innovation in the derivative space, you know, we have
- 22 seen the markets grow pretty significantly, both in the

- 1 U.S. and in Europe. Despite the fact that we don't
- 2 have a Federal cap-and-trade program for carbon or
- 3 federally mandated renewable portfolio standard, as was
- 4 previously mentioned earlier today, we have seen open
- 5 interest increase just in the last 10 years. In
- 6 European carbon and the United States combined, there
- 7 are about 650,000 contracts of open interest back in
- 8 2009. Now we see open interest at about 2.8 million
- 9 contracts between Europe and the U.S.
- 10 Probably maybe even more surprisingly is that
- 11 the U.S. environmental markets, though regional and
- 12 state-based in most cases, open interest has increased
- 13 nearly 10X, from 100,000 contracts at the time in 2009,
- 14 and will likely approach a million contracts by the end
- 15 of the year.
- So, despite the fact that we don't have a
- 17 Federal cap-and-trade program, again, or a renewable
- 18 portfolio standard, the regional and state-based
- 19 markets have continued to advance. And some of the
- 20 derivative instruments that have been listed as a
- 21 result have also -- we have seen liquidity increase in
- 22 those.

- 1 I think the first panel touched on some of
- 2 the macro trends that we are seeing on the power
- 3 generation side. This chart depicts coal versus
- 4 renewables. Obviously, there are other fundamental
- 5 reasons for the growth of renewables and the decline of
- 6 coal on a relative basis, including low natural gas
- 7 prices, but markets have played a role. In particular,
- 8 the state-based renewable portfolio standard markets
- 9 have played a significant role in advancing renewables
- 10 in the U.S.
- 11 The next chart really depicts global CO₂
- 12 trading. And going back to 2005, that is the first
- 13 year on the chart. That is just purely the European
- 14 Union emission trading scheme in their cap-and-trade
- 15 program for carbon.
- 16 Over the years, we have seen other programs
- 17 develop: the California cap-and-trade program. In
- 18 2009, we had the first multistate regional carbon-
- 19 trading program in the U.S., the Regional Greenhouse
- 20 Gas Initiative, which started as 10 states in the
- 21 Northeast, and in 2012 was reduced to 9 when New Jersey
- 22 withdrew from the program. They are actually

- 1 officially rejoining RGGI to start 2020. Virginia,
- 2 Pennsylvania, and other states have been under
- 3 discussion of joining RGGI as well. On a global basis,
- 4 we have seen emission-trading programs develop in South
- 5 Korea, New Zealand, [and] China is obviously a very
- 6 large emitter. And the Chinese ETS is due to go in
- 7 force at the start of 2020, which if you look at the
- 8 last bar here, you will see a significant increase in
- 9 the covered emissions under mandatory emission-trading
- 10 schemes, to approach 14 percent of global emissions at
- 11 that point.
- We touched on the RPS, renewable portfolio
- 13 standard, markets, but this chart is just showing on a
- 14 state-by-state basis, you know, where those markets
- 15 exist and what some of the renewable targets are in
- 16 those markets.
- 17 You know, really, these are still on a
- 18 relative basis very young markets. The first RPS
- 19 markets didn't develop until the late '90s, with New
- 20 Jersey and Texas being, really, first movers in
- 21 developing RPS markets. Now we have 29 states plus
- 22 D.C. So those markets are certainly expanding. And,

- 1 as some of the previous panelists mentioned as well,
- 2 the targets themselves are becoming more aggressive in
- 3 nature.
- 4 Just quickly on the current universe of
- 5 environmental derivatives in the United States or North
- 6 America generally, we have carbon-trading markets in
- 7 both California and RGGI, the Regional Greenhouse Gas
- 8 Initiative. So you have futures contracts and options
- 9 contracts that trade based on those carbon-trading
- 10 systems. You also have numerous renewable energy
- 11 certificate markets that are actually listed as futures
- 12 contracts and options contracts. I mentioned roughly
- 13 100 different tradeable over-the-counter underlying REC
- 14 markets in the United States. About two dozen of those
- 15 now are listed on a regulated futures exchange. In
- 16 particular, the product slate that we have listed on
- 17 our partner exchange with Nodal is about two dozen
- 18 different REC products.
- 19 And so, actually, the broadest slate of
- 20 renewable energy certificate markets listed on any
- 21 futures exchange, this slide really gives you an idea
- 22 of some of those markets and how they are classified

- 1 typically on a state-by-state basis. What we have seen
- 2 in the secondary market on the derivatives side is that
- 3 liquidity also has tended to evolve over the years. So
- 4 now we see things like a PJM tri-qualified REC
- 5 contract, which is a futures contract that calls for
- 6 delivery of RECs that qualify in Pennsylvania, New
- 7 Jersey, and Maryland. So the secondary market and,
- 8 really, product innovation and starting as an over-the-
- 9 counter product has now evolved into an exchange-traded
- 10 product and showing some evolution in those markets as
- 11 well based on common underlying attributes in those REC
- 12 markets. There is also an example of a NEPOOL dual-
- 13 qualified REC that qualifies in both Connecticut and
- 14 Massachusetts.
- Just quickly on specifically the growth of
- 16 environmental derivatives volume at Nodal Exchange,
- 17 which these products are still relatively new, just
- 18 launched just under a year ago, in November of 2018.
- 19 But we have seen trading volumes in those products.
- 20 Approaching 100,000 contracts in the first year, open
- 21 interest is now approaching 50,000 contracts across REC
- 22 and carbon markets in the U.S. So again, those are

- 1 relatively new products, but liquidity is developing in
- 2 those markets.
- 3 Just to give you an idea of overall open
- 4 interest, I think we touched on the overall numbers
- 5 approaching over 925,000 contracts now in the U.S.
- 6 Just two years ago, it was about half that amount. So
- 7 the markets, just in a short period of time, open
- 8 interest has increased pretty significantly in U.S.
- 9 environmental products.
- 10 On a relative basis, as I mentioned, there is
- 11 a mandatory emission-trading program in Europe that has
- 12 existed since 2005. Open interest, there is about 1.9
- 13 million contracts. That is really predominantly on the
- 14 two major exchanges that are in that market: ICE and
- 15 EEX, European Energy Exchange.
- On a relative basis, if you look at the pie
- 17 chart on this slide, you will see that you have about,
- 18 an equal split nearly between the open interest and REC
- 19 products in the U.S. and carbon products in the U.S.
- 20 And, then, the blue piece of the pie chart is actually
- 21 Europe. So while the U.S. is still a smaller piece of
- 22 the exchange-traded derivative products on the

- 1 environmental side, it is significant and growing.
- 2 This slide here is really just pointing to
- 3 the environmental products on ICE that qualify for the
- 4 commitment of trader report currently in the U.S. That
- 5 is obviously a subset of the products and about 600,000
- 6 contracts of the 925,000 of total open interest, but it
- 7 gives you a good idea of sort of the universe of
- 8 participants and the number of participants in these
- 9 markets, the largest of which being the California cap-
- 10 and-trade market, where you see in some of the vintage
- 11 products approaching 65 participants that have
- 12 reportable levels of open interest in the market. On a
- 13 relative basis, if you look at natural gas or oil
- 14 markets, you are looking at 200 to 400 participants in
- 15 those markets. So the universe of participants, while
- 16 similar in nature, is still evolving and still a subset
- 17 of the overall energy markets.
- Those are really the end of my remarks, but I
- 19 look forward to taking any questions that anyone has.
- 20 Thank you.
- 21 CHAIRPERSON WIGGINS: Thank you, Dan.
- 22 Michael?

- 1 MR. KIERSTEAD: Thank you. Just give me one
- 2 moment to bring up my presentation. Thank you.
- 3 [Pause.]
- 4 MR. KIERSTEAD: Thank you.
- 5 My name is Michael Kierstead. I am the Head
- 6 of Environmental Products at the Intercontinental
- 7 Exchange. I would like to take a moment to thank the
- 8 CFTC as well as the EEMAC for hosting us today. The
- 9 CFTC, thank you for your oversight and your commitment
- 10 to the futures market.
- 11 Intercontinental Exchange. We are a market
- 12 operator of a global network of clearinghouses and
- 13 exchanges. This is no different than the environmental
- 14 markets based in the U.S. and in Europe. We also
- 15 provide our customers with a robust data offering,
- 16 which helps in price discovery and transparency.
- 17 So there has been significant discussion this
- 18 morning on the decarbonation and what we are seeing
- 19 next in energy markets. So I won't spend too much time
- 20 here, but what we are seeing is an increase in
- 21 renewable energy generation. We are seeing an increase
- 22 in interest in global cap-and-trade markets. Depending

- 1 on the jurisdiction, we are seeing a decrease in coal,
- 2 obviously in OECD countries as well as Asia is seeing
- 3 an increase in coal. So it all depends on the region
- 4 and the policies put in place in those regions.
- 5 Biofuels and the electrification of
- 6 transportation. This is EVs. This is blending
- 7 ethanol, biodiesels into the fuel stack. These are
- 8 some of the macro energy trends we are seeing.
- 9 So what is energy today? How is it used?
- 10 Who is using it? I think it is interesting to look at
- 11 this through this lens as we move forward and discuss
- 12 some of the environmental markets that trade on an
- 13 exchange, notably in electricity generation, natural
- 14 gas and coal, nuclear, and renewables; and in
- 15 transportation, oil, natural gas, electricity, as well
- 16 as biofuels.
- 17 This is a snapshot of today. What will the
- 18 future look as we look through these different types of
- 19 energy?
- 20 So the global environmental complex at ICE is
- 21 made up of three pillars. The first is the cap-and-
- 22 trade programs. That is the European ETS; the WCI,

- 1 which is California and the Province of Ouebec; as well
- 2 as RGGI, which is the Northeast U.S. Renewable energy
- 3 markets as well would be the second pillar. And last
- 4 would be the low-carbon fuel standards, LCFS, in
- 5 California; as well as the Federal RIN mandate.
- 6 So when we take a look at the North American
- 7 environmental markets, just zoning in on North American
- 8 specifically, this is what our customers are telling
- 9 us. The open interest has increased drastically, as
- 10 you can see by the chart; volumes as well if you take a
- 11 look at early days in 2013 versus what we are seeing in
- 12 2019. The interest has increased significantly.
- Now, the way the open interest is broken down
- 14 using the three pillars, for this slide, it is actually
- 15 two of the three. So we have the cap-and-trade
- 16 programs, RGGI, California cap-and-trade and Province
- 17 of Quebec, as well as the REC markets. And you can see
- 18 the different color schemes there as well as with the
- 19 monthly volume. And, again, just noting in 2019, the
- 20 increase in participation in volumes has been
- 21 significant compared to prior years.
- 22 So this is just a zooming-in of the

- 1 individual pillars that we list as far as environmental
- 2 products. And, of note, the decreases in each of the
- 3 open-interest lines is related directly to the physical
- 4 delivery.
- 5 In 2018, 30 percent of all volume ended up in
- 6 physical delivery. Now, for a futures market, this is
- 7 quite high compared to historical other physical
- 8 commodities. So there are benchmark delivery months in
- 9 the carbon product, CCA and RGGI. We are looking at
- 10 December. In the PJM markets, it is July based on the
- 11 energy year how those transact. Most of the open
- 12 interest hovers in one month. And then there is a big
- 13 physical delivery. And that is where our clearing
- 14 members in the clearinghouse really participate in
- 15 these markets.
- 16 So, looking at the global environmental
- 17 landscape, if you look at the North American markets,
- 18 our average daily volume of around 8,600 lots. I
- 19 mentioned 2019 has been a banner year so far versus
- 20 2018. That is a 55 percent increase, open interest as
- 21 well. This data was taken from the end of September.
- 22 So September 30th, the open interest was 825,000 lots.

- 1 As of yesterday, ICE open interest is 912,000 lots. So
- 2 in just over a month, that is almost an 11 percent gain
- 3 in open interest.
- 4 And I had mentioned delivery volume
- 5 approaching 300,000 lots as of the end of September.
- 6 That is a 13 percent increase over 2018. And in 2018,
- 7 30 percent of all volume went physical delivery.
- 8 Comparing this to the Europe ETS emissions
- 9 scheme, average daily volume is 43,000 lots at ICE.
- 10 And this is made up of approximately 30,000 futures and
- 11 13,000 options.
- 12 Open interest is two times that of North
- 13 America, at 1.5 million lots, with a notional value of
- 14 38 billion. Now, in 2018, there has been a little bit
- 15 of headwinds from Brexit relating to the European cap-
- 16 and-trade program, but it is still a robust market.
- 17 So what are we seeing next? As I mentioned,
- 18 things do change quickly, notably the program linkages
- 19 on Tuesday. I should have Virginia in here as a
- 20 possible linkage with RGGI. This is how fast things
- 21 can change, obviously North Carolina, as Dan mentioned,
- 22 New Jersey is going to be joining in January of 2020.

- 1 Pennsylvania is looking at a link with RGGI as well.
- TCI, which could double the size of the RGGI
- 3 market, is a tailpipe emissions market similar to the
- 4 LCFS market with the exception that it is a cap-and-
- 5 invest, more of a cap-and-trade, where the allowances
- 6 will be auctioned, similar to California and RGGI.
- 7 So looking at CCAs, the possible states that
- 8 would be linking to that program, Colorado, Nevada, New
- 9 Mexico, Oregon, and Washington that were mentioned
- 10 earlier, as well as Mexico, which is doing a
- 11 preliminary market now with the possible expectation of
- 12 expanding into WCI. CORSIA is a good example of
- 13 currently it is a voluntary market with the
- 14 international aviation industry. This is capping CO₂
- 15 related to international air travel. And, last, but
- 16 not least, Article 6, which is the Paris Agreement,
- 17 this is calling for a global price of carbon. Now, you
- 18 can imagine it is hard enough to do it in one country
- 19 or numerous countries, let alone having everyone on
- 20 board. But certainly it is interesting. It is
- 21 something to look forward to should there be a global
- 22 price on carbon.

- 1 Thank you.
- 2 CHAIRPERSON WIGGINS: Thank you very much,
- 3 Michael.
- 4 Dr. Sandor?
- 5 MR. SANDOR: Thank you very much for the
- 6 invitation, Commissioner Berkovitz. And hello to all
- 7 of the other Commissioners and staff here.
- It warms my heart always to be here. And the
- 9 very role of this Commission in environmental
- 10 derivatives may be overlooked. I want to share with
- 11 you a little bit about the inventive process and how
- 12 you come up with new ideas and the path of launching
- 13 those new ideas. There would, in fact, be no
- 14 environmental derivatives if there wasn't a CFTC,
- 15 clearly.
- And, even in that process, in crafting the
- 17 legislation -- I am 700 years old. So I am going to
- 18 tell you some historical events. In '73, after the
- 19 great grain markets and Arab oil embargo, the
- 20 government established the CFTC in an act in '74. But
- 21 where environmental derivatives come in is in that act,
- 22 we had to carefully define what a commodity was, no

- 1 longer a storable physical commodity. So the
- 2 definition had to be changed to include intangibles as
- 3 well as things like financial futures. And the
- 4 intangibility was a critical definition.
- 5 The second key factor is the agency. And I
- 6 think it is relevant given the talk between the members
- 7 of the Committee and the audience about who does what
- 8 for CFTC, et cetera. So then we were careful and
- 9 prodigiously worked to give the CFTC exclusive
- 10 jurisdiction. And that facilitated the development of
- 11 inventive activity. That involved working with the
- 12 then CEA, working with the House and Senate committees,
- 13 educating the legislators, and then educating the
- 14 regulators. That will be a pervasive theme in the
- 15 innovative process.
- 16 So if we take a look at five examples of
- 17 financial innovation, the Dutch East India Company in
- 18 1605; the birth of wheat trading in 1848; the birth of
- 19 financial futures in 1975, interest rate futures; the
- 20 birth of SO₂ trading in '90; and the birth of carbon
- 21 trading in the Chicago Climate Exchange -- Dan did most
- 22 of my heavy lifting. And so did Michael. So I

- 1 appreciate it.
- 2 All of those go through the same process.
- 3 You have a rapid, and you have to identify a structural
- 4 change. In the case of the Dutch East India Company,
- 5 it was the opening of trades with the Far East, which
- 6 generated the need for capital, the invention of the
- 7 limited liability corporation, the Amsterdam Stock
- 8 Exchange, futures on the Dutch East India Company
- 9 options, et cetera.
- 10 Wheat. The growing of the commodity was in
- 11 the Midwest, the population in the East. You had to
- 12 have forward contracting. You had, in fact,
- 13 standardization that followed the structural change.
- 14 Then you have to create evidences of ownership because
- 15 you, better than everybody, know we don't trade actual
- 16 corn or beans or bonds. We trade evidences of
- 17 ownership. Then over-the-counter markets spring up.
- 18 Exchanges come into being. Derivatives come. And then
- 19 you have deconstruction with OTC markets, like swap,
- 20 swaptions, et cetera.
- You go and find the same thing with acid
- 22 rain. How does it come about? How do you build the

- 1 market? And what is the clue? The clue is a massive
- 2 change in the environment. There is production of
- 3 electricity in the Midwest. When coal is burned, it
- 4 releases sulfur. It combines with oxygen. It drifts
- 5 over into the East Coast. Rivers get acidified. You
- 6 get forests which are essentially neutered. And you
- 7 get lung disease of incredible proportions.
- 8 You have to get an act passed. You are okay
- 9 or one is okay because you know you can trade a
- 10 derivative on it, but you have to enable the cash. So
- 11 you have to work with different constituencies from
- 12 utilities to line producers, who are part of the
- 13 solution and will stand to benefit because of scrubbing
- 14 devices that use the commodity.
- 15 You have to then very carefully once again
- 16 work with the legislators. You finish that, and then
- 17 the story really begins anew. And how does it begin
- 18 anew? You have got multiple agencies here, and you
- 19 have to go and visit Bill Reilly, the head of the EPA,
- 20 and you have to point out that the legislation has got
- 21 flaws and needs clarification. Why is that? Because
- 22 there is no requirement for continuous emission

- 1 monitors. So there is asymmetric information. So
- 2 people like Rob can't trade it if the utilities have
- 3 all of the information about supply and the speculators
- 4 have none.
- 5 You fix that legislation. You work with a
- 6 devoted absolutely clear public person like Brian
- 7 McClain, who headed the Acid Rain Division. And there
- 8 is not a massive bureaucracy, but you work with them to
- 9 get a registry. And, very importantly, you then have
- 10 to go out and recognize the legislation passed, we are
- 11 ready, but it doesn't take effect. There is no
- 12 registry. And then you become a market participant.
- 13 And it is very important to recognize that
- 14 the predecessor to EFP did the first trade. It wasn't
- 15 a trade. It was a financing transaction. We went to a
- 16 utility in Kentucky that was going to borrow \$50
- 17 million to build a scrubber. We present-valued 30
- 18 years of SO_2 allowance. We gave it to them so they
- 19 didn't have to leverage the municipality. We took the
- 20 30 years of reductions, sold it to a southeastern
- 21 utility that didn't have the acreage to build a
- 22 scrubber.

- 1 So, actually, you look at this agency. It
- 2 looks like people are trading all over the thing. No.
- 3 It is raising \$50 million to build the scrubber. And
- 4 when people talk about derivatives, we need to
- 5 emphasize more the financing, as opposed to the short-
- 6 term risk transfer. There is a very, very big long-
- 7 term transfer if it is used appropriately.
- 8 Let's go forward to carbon. You get to work
- 9 on that, and you have got to get another bet, or as an
- 10 inventor. And you get a lot of them right, and you get
- 11 a lot wrong. And you go to Rio in 1992, and you
- 12 present a paper at the Rio summit. And you talk about
- 13 the need for CO_2 and cap-and-trade markets. And you
- 14 get bounced around because the idea is too early, just
- 15 like it was with every other innovation.
- 16 You work, and you try to get a global
- 17 emissions-trading market started in 1995. You fail.
- 18 Okay? You continue on, look at the effects and the
- 19 battered body. You charge into the wall again, assess
- 20 the damages, and go right back in the wall. You go to
- 21 Kyoto in '97.
- 22 And then, finally, you go and take a fresh

- 1 look in 2000. And you say, "Okay. Nothing happened
- 2 for the last eight years in Washington. What is going
- 3 to happen in the next 20 years?"
- 4 And as you are an inventor, you say, "Nothing
- 5 will happen in Washington for the next two decades."
- 6 So, therefore, you start a voluntary exchange. You
- 7 build in 400 producers: Ford, DuPont, American
- 8 Electric Power, Honeywell, Intel. You get common
- 9 standards.
- Then you invite cities, and you get lucky
- 11 because you run into Jerry Brown in California, and the
- 12 City of Oakland joins, and he buys the fact that there
- is a need for a regional program. And understand
- 14 environmental laws start from the local level and then
- 15 ultimately the national level.
- So you don't lose heart, and you start a
- 17 European market. And you go, and you have heard from
- 18 these two guys. This is serious. The open interest in
- 19 North American carbon is bigger than gold and silver
- 20 and platinum combined. Let me say that again. The
- 21 open interest in North American environmental markets
- 22 is bigger than the open interest in all the precious

- 1 metals, not insignificant.
- 2 Let me, if I can, tell you that and just to
- 3 conclude or the last five minutes that I have, in
- 4 addition to the seven stages, you really need to do
- 5 nine things simply. You have got to recognize that the
- 6 market has price volatility. If there is no price
- 7 volatility, there is no market. You have to have
- 8 homogeneity. And you have to have some breadth of
- 9 players. It doesn't have to be as wide as many people
- 10 think. It can be 10. It could be 20. It could be 50
- 11 as long as there is perfect competition and no ability
- 12 to manipulate. Then you need to have hedging, which is
- 13 flawed. Okay? So contracts, forward contracts, that
- 14 are broken can't be reliably used to hedge, too
- 15 expensive to hedge, like the borrowing of bonds and
- 16 shorting the efficiency of derivatives markets for
- 17 that. Once you have all of that, you need a viable
- 18 cash market or something to settle to that is viable,
- 19 like a stock index, but you need that viability.
- 20 And, most importantly, you need four steps
- 21 which take you about a decade. Okay? They are the
- 22 education of the legislature and the regulators. And

- 1 that is one-on-one hard time to make sure because they
- 2 are your friends, not your enemies. You educate the
- 3 legislators. You educate the commissions and all of
- 4 the other regulators that are involved.
- 5 Once you do that, you then have to design the
- 6 exchange. What degree of mutuality? Is it like
- 7 members' exchange? Is it all for profit? Who owns it?
- 8 What is the organic structure? Given the for-profit
- 9 environment, how do you get advisory committees in the
- 10 product development stage? How do you engage your
- 11 constituency?
- 12 Then, of course, very important, the design
- 13 of the contract itself, its size, and the
- 14 environmental. Does it include negative emissions and
- 15 positive emissions? So in 2002, the environmental
- 16 community was not so keen on negative emissions
- 17 offsets. And that is accumulation of carbon, methane
- 18 credits, soil conservation from low-till, no-till.
- 19 Many of those are not wasted because they are now in
- 20 California's protocols. So that educational effort
- 21 about having negative emissions and positive emissions
- 22 be tradeable is very important.

- 1 The last one, which is onerous, is more
- 2 education. So at the acid rain in 1993, we had at the
- 3 Board of Trade SO₂ auction Ronald Coase, who Dan
- 4 mentioned, who ultimately won the Nobel Prize. And at
- 5 that point, he was an 89-year-old scholar. And he gave
- 6 a pep talk about emissions trading and how it could be
- 7 feasible.
- 8 You educate, and you go and you set up a
- 9 course, which we did at Northwestern and one at
- 10 Columbia. And you teach it. You get to students.
- 11 Then you have to educate the attorneys. And after you
- 12 finish with the attorneys, you need the accountants.
- 13 And after you get the accountants, you need to go to
- 14 the technologies, and you need to go to the ISVs, and
- 15 you need to go to the back office. Then you need to
- 16 get the salesmen, who sell the product.
- In my humble experience, if you are starting
- 18 in a brand-new commodity in a brand-new exchange,
- 19 financial futures, acid rain, carbon, it is a 10- to
- 20 20-year process. And it takes about \$30 to \$50 million
- 21 of outside capital to get to that area. And I think
- 22 Michael's notion of where European carbon trades is

- 1 right on that timeline. Fifteen years, you know, and
- 2 it is finally kicking in.
- 3 So what did I learn on this process? You
- 4 have to take a look at where one thinks the world is in
- 5 2030 and 2040 if you are embarking now. We had to make
- 6 a bet recently that LIBOR would go away, which we did
- 7 in 2011 and prepared to spend two decades to implement.
- 8 What else have I learned? As long as you get
- 9 a binding Federal agency, like the CFTC, you can start
- 10 any new market. It does not depend on Federal
- 11 legislation. As a matter of fact, the history of
- 12 environmental markets is -- this is a clinical
- 13 observation and not a criticism, it is mathematically
- 14 related to the success to the distance from Washington,
- 15 D.C. Okay? The further you go, the more people
- 16 believe in cap-and-trade and execute it, number one as
- 17 an observation.
- 18 Two, you have got to keep it simple. Maybe
- 19 the products are complex, but you have got to find a
- 20 way to homogenize them.
- 21 Number three, markets succeed when
- 22 legislators and regulators are properly educated and

- 1 are not the enemy but the friend.
- 2 Four, there is an incredible amount of
- 3 hostility to pricing -- okay? -- in environmental
- 4 markets. One reads about the E.U. ETS, and you get a
- 5 million articles. None of them talk about the
- 6 environmental reductions that have occurred. They talk
- 7 about the price being too low or the price being too
- 8 high. When we have a bumper crop or scarcity, we know
- 9 that price is a critical signal. It is not the
- 10 objective of the program. The objective of the program
- 11 is to reduce emissions. Low price doesn't mean
- 12 failure, and high price doesn't mean success. It is
- 13 the second- and third-order effects.
- 14 Policy can make or break a program. And we
- 15 have got to be careful of that. Flawed market
- 16 architecture cannot be assumed to be known and given.
- 17 We work devilishly hard on the registry for SO₂. And,
- 18 yet, the government passed an act which had no RINs
- 19 registry and, thus, manipulation and breaking it. So
- 20 one has another reason to engage the regulators and the
- 21 legislators.
- I think we are just at the beginning, in

- 1 conclusion, there are water markets. There are
- 2 endangered species. There are all kinds of genetic
- 3 compositions that lie and whatnot. We are going to be
- 4 in a very rich era. And I would not at all think that
- 5 environmental markets in the future will be limited to
- 6 airborne emissions. That is just the beginning.
- 7 Thank you.
- 8 CHAIRPERSON WIGGINS: Thank you all for your
- 9 presentations.
- 10 We are now going to open the floor for
- 11 questions and discussion regarding the environmental
- 12 derivatives presentations. And, as we did before, we
- 13 are going to begin with questions and comments from the
- 14 Associate Members of the EEMAC to the Members of EEMAC.
- 15 And, Michael, I think I saw your card up first.
- MR. PROKOP: And thank you for that, Dena. I
- 17 appreciate that. And thank you for a great
- 18 presentation, everyone. Always great to hear your
- 19 insight, too, Doctor.
- MR. SANDOR: Thank you.
- MR. PROKOP: We have known each other for a
- 22 long time. And you would have thought that the good

- 1 doctor and I had talked about this for this seque, but
- 2 your last comments are exactly what my first comment
- 3 and question to the panel is going to be about.
- In the 11 years that I have been part of and
- 5 very fortunate to be a part of this committee in its
- 6 various iterations -- and, Sean Cota, great to see you
- 7 again from 2008, when Bart Chilton had the foresight to
- 8 put something like this together. And we miss him
- 9 dearly.
- 10 But, I always come back to the simple
- 11 building blocks of some of these markets and what they
- 12 mean. In that thought, we are here as an advisory
- 13 committee, everybody in this room that is sitting at
- 14 this table. And we are advising the CFTC, not only on
- 15 new innovative markets like this but potentially on
- 16 what markets may come or research.
- One of the things I did way back in my
- 18 brokerage days was look at weather markets. One thing
- 19 Mother Nature always gave us was wind, sun, rain. And
- 20 very much part of these renewable markets now, we are
- 21 talking about growing wheat and sugar and different
- 22 things that go into biofuels and what have you.

- 1 So my question to the panel right now would
- 2 be, are we actually going to be after all of these
- 3 years maybe even seeing a resurgence in the weather
- 4 markets? The weather markets back in the day were
- 5 something that was conceived by many of the insurance
- 6 companies for the hedging against natural disasters. A
- 7 lot of the big amusement park companies, like the
- 8 Disney Corporation, about hurricanes and loss of
- 9 revenue that way. Are we now seeing a new reason for
- 10 these markets to come as we look at the possible
- 11 hedging and derivative aspects of these fundamental
- 12 building blocks?
- 13 Thank you.
- MR. SANDOR: Yes. I was really apprehensive
- 15 about relaunching catastrophe derivatives. You may
- 16 know we wrote a paper in the British Journal of Finance
- 17 in 1970 calling for catastrophe derivatives. And I
- 18 started it. And it was singly one of the biggest
- 19 failures that I have had. We put a lot of energy into
- 20 it, and I got it wrong.
- 21 And I will tell you why we got it wrong,
- 22 because it relates to what -- we thought it would come

- 1 to be a -- if you could trade. And we listed products
- 2 like tornadoes, hurricanes, California quake, and a
- 3 number of others. And it went down like a lead
- 4 balloon.
- 5 And I will tell you why I think we failed at
- 6 it. It didn't go down conceptually. It was a bad
- 7 business decision because 15 to 20 percent of the
- 8 insurance business is now in what is called alternative
- 9 risk transfer, except there are CAT bonds. They are
- 10 over-the-counter. And the lesson I learned from that
- 11 failure, unless you have daily events that will move
- 12 the price, it doesn't become a good futures contract
- 13 because it lays there until there is an event. And
- 14 maybe a Florida catastrophe comes and it forms a
- 15 tropical depression and for seven or eight days, he or
- 16 she, that hurricane bounders up and down, and there is
- 17 really no risk transfer except for two, three days,
- 18 when it is evident that it is going to hit. That is a
- 19 better risk transfer in a bond than it is in a listed
- 20 derivative.
- 21 And so what I learn is that you have to be
- 22 cautious any environmental derivative you list. It has

- 1 to have something that will move enough to keep market
- 2 makers involved, long-term hedgers, and short terms,
- 3 and very successful product but not exchange-traded.
- 4 CHAIRPERSON WIGGINS: John?
- 5 MR. PARSONS: Thank you. Those were great
- 6 presentations. I appreciate it.
- 7 I have a question, but I am going to state my
- 8 question a little bit as a provocation. I am a little
- 9 worried about the picture not being true to the
- 10 reality. It sounds like there are lots and lots and
- 11 lots and lots and lots of environmental
- 12 markets, but I don't think that is true.
- 13 The E.U. ETS is a real market. So that is
- 14 fine. It is one product. It trades actively. All
- 15 sorts of industries are involved. The price moves
- 16 minute-by-minute, day-by-day. I can find lots and lots
- 17 of academic studies analyzing the price movements. I
- 18 can find academic studies analyzing the hedging and the
- 19 operating decisions by various types of companies in
- 20 Europe on that. I can't find a single one for any of
- 21 these North American markets, but I may not be well-
- 22 informed. So I am happy to hear about them.

- 1 And I have a number of experiences where
- 2 these markets have been presented as existing when,
- 3 really, there is no trade. They are not really used or
- 4 they are used for other purposes. So the other-purpose
- 5 example isn't one for environmental markets, but China
- 6 used to have a heating oil futures market that was very
- 7 active until they changed their tax law and it
- 8 disappeared. It was just a tax dodge. It didn't have
- 9 any real hedging purpose. But people wrote about it as
- 10 if it was a real risk management market.
- 11 In the North American renewables market -- or
- 12 let's talk about RGGI. In Massachusetts, we are a part
- 13 of RGGI, but RGGI is a pretty loose cap on carbon. And
- 14 we have a law that we passed that required us to reduce
- 15 carbon much more than one RGGI requires. And we now
- 16 have specified that the fossil fuel generators in
- 17 Massachusetts have to go down, down, down. The RGGI
- 18 price is very irrelevant to anything going on for a
- 19 Massachusetts electric generator. So I don't know who
- 20 is using RGGI hedges or for what purpose. I would find
- 21 it a real puzzle.
- So, as I said, the E.U. ETS is real. I

- 1 understand the RIN market is real with all of its
- 2 problems. Can you explain to me who is using these
- 3 RECs? Is there any public data, public published
- 4 information about the prices on these things that is
- 5 academic that is peer-reviewed and transparent? I
- 6 think that would be very informative.
- 7 The claim that the North American carbon
- 8 market is larger than precious metals. Maybe you can
- 9 come up with a statistic that says it is larger, but
- 10 the precious metals are a real market. The North
- 11 American carbon market, it is not clear to me it is.
- 12 So I am curious to hear substantive information that it
- 13 is.
- MR. SCARBROUGH: Yes, sure. That is a really
- 15 good question. And, I think this actually goes back to
- 16 a lot of what Richard tends to talk about with the
- 17 North American environmental markets' perception versus
- 18 reality. And I think it is very safe to say that the
- 19 perception is that there is not a lot going on in the
- 20 U.S. environmental markets. They are not real markets.
- 21 But I do think that, in large part, that is due to a
- 22 lack of information, a lack of awareness on those

- 1 products.
- 2 And I can say, even for us, I mean, really,
- 3 this is what we do on a daily basis and have been
- 4 focused on this for nearly 15 years and trying to find
- 5 good sources of data around these programs and trying
- 6 to, certainly in an aggregated format, is a challenge.
- 7 But that information is out there, and these are public
- 8 programs.
- 9 I would note a nonprofit website DSIRE that
- 10 tracks the state renewable portfolio standard markets.
- 11 That tends to do a good job of summarizing the RPS
- 12 standards and the evolving targets that they have in
- 13 those markets. But to a certain extent, I would say
- 14 that, if you look at, whether it would be the Federal
- 15 renewable fuel standard, the state-based RPS markets,
- 16 the Federal, the evolving I guess regional and state-
- 17 based low-carbon fuel standards in California, Oregon.
- 18 Some of the Canadian provinces are also looking to
- 19 adopt mandatory low-carbon fuel standards as well.
- 20 And, really, it is, as Richard kind of I
- 21 think alluded to, in the market development process all
- 22 predicated on the underpinning of these environmental

- 1 markets. Are they legislated? Are they regulated?
- 2 who are the participants in these markets?
- I think you can point to a lot of publicly
- 4 available information because these are government-run
- 5 programs. If you look at the RGGI program, for
- 6 example, every quarter when they have a quarterly
- 7 allowance auction, you can see a list of eligible
- 8 bidders in that market. That is public information.
- 9 Also in the California cap-and-trade program, the same.
- 10 That is public information.
- In the case of the REC markets, there are
- 12 numerous. Typically these are run by the registry
- 13 administrators. PJM has a registry. NEPOOL has a
- 14 registry. And there are a number of reports that show
- 15 the registry account holders in those programs,
- 16 generation statistics around the RECs, how they are
- 17 being created, where they are coming from.
- 18 So I would say that the data is out there.
- 19 It is not easy to find, certainly, but, I think if you
- 20 do take a look at those lists of companies, you are
- 21 going to see a lot of commercial end-users, some of
- 22 which are in this room right now, like BP, for example,

- 1 showing up on that RGGI participation list, the
- 2 California cap-and-trade program. And typically if you
- 3 look at that on top of the commitment in trader
- 4 reports, you will start to see some of the disposition
- 5 between commercial and noncommercial, you know, users
- 6 in those markets and the fact that, you know, the
- 7 futures markets now have come into play for the
- 8 environmental markets fairly recently. You have more
- 9 information. You have more visibility and obviously
- 10 more transparency around daily volumes, open interest,
- 11 number of trades, all the different products that are
- 12 listed if you go to the ICE website, certainly, you are
- 13 going to see a lot of that information But, you know,
- 14 again, you know, I think perception versus reality is a
- 15 real thing in these markets.
- MR. KIERSTEAD: Thank you, Dan. Very well
- 17 said.
- 18 I would just like to add if comparing the
- 19 E.U. ETS to RGGI or North American environmentals
- 20 overall, that market, even based on average daily
- 21 volume, is five times the size. If you pull out just
- 22 RGGI, it would be 20 times, if not more. RGGI is only

- 1 the electricity industry, where the European ETS is
- 2 industry-wide.
- 3 And as far as the data goes, I mean,
- 4 Intercontinental Exchange has all of that data as far
- 5 as volume, open interest, number of participants, and
- 6 just the growth in the overall market.
- 7 MR. SANDOR: Dan, great observations. And we
- 8 do talk a lot about perception and reality. There is a
- 9 critical point here again. These innovations require
- 10 10 to 20 years. I have been teaching at the college
- 11 level for 56 years. And I have never seen an academic
- 12 jump in and get a peer-reviewed article two years into
- 13 something to be done.
- 14 So lesson number one, they don't come in
- 15 until there is huge amounts of data because they are
- 16 not going to say anything that can't be supported by
- 17 the data. And the data are generally not accumulated
- 18 is lesson one.
- 19 Lesson two, particularly in environmental
- 20 markets, because of the constituency and because of the
- 21 public, everybody who is involved in the market is
- 22 expected to be perfect. Perfection is the enemy of the

- 1 good.
- When the Wright brothers flew off Kitty Hawk,
- 3 they didn't have seatbelts. Okay? They didn't have a
- 4 runway. You just want to get the sucker off the
- 5 ground, fly it for 63 feet for 40 seconds. The first
- 6 airplane you build is not a dream liner, a 777, or a
- 7 747. It doesn't have safety measures. It doesn't have
- 8 anything. So why expect that markets should be
- 9 perfect?
- 10 Look how long it took to get to the iPhone.
- 11 You could have said, "The Mac." It is worthless. It
- 12 is a toy. It is just for geeks and nerds. It will
- 13 never serve any real purpose. So we have got to do
- 14 that.
- The second thing is because it is a public
- 16 market, there is an exceeding demand for perfection.
- 17 And I understand that. But the reality of industrial
- 18 and financial inventive activity is they never start
- 19 perfect. Inventions are then modified, proved, et
- 20 cetera. So one has to be extremely temperate and
- 21 cautious about describing whether a market performs a
- 22 risk transfer, price discovery function until that

- 1 market is developed. It is a dangerous thing to draw
- 2 conclusions based on it.
- RGGI was flawed, so flawed they set the cap
- 4 wrong. Okay? And the price was zero. Nobody killed
- 5 the concept. They said, "Let's go back to work and get
- 6 it right." We were against the single product,
- 7 electricity. No other market runs like that. The EU
- 8 is from many sources and allows industrials.
- 9 RGGI will grow. Don't criticize it. It will
- 10 modify. It will develop. It's too early. And it is
- 11 like me saying to my seven-year-old grandson who sticks
- 12 his hand on a stove, "The kid will never learn." Okay?
- 13 Yeah, he will learn if he gets burned once. So I think
- 14 be cautious about leveling that heat-seeking missile
- 15 because in new markets, heat-seeking missiles are easy
- 16 to launch. And you don't want to kill the baby until
- 17 it develops.
- 18 CHAIRPERSON WIGGINS: I am mindful of the
- 19 time here, but I see quite a number of cards up. So if
- 20 I can ask you to please be brief so we can stay close
- 21 to being on schedule? Jim?
- MR. ALLISON: I will try to be brief.

- In the history, you started with Coase, but
- 2 Pigou's book from 1920 could be said to be the heart of
- 3 this. Under what circumstances is a tax on the
- 4 negative externality to be preferred? Under what
- 5 circumstances do we prefer a cap-and-trade or when are
- 6 we indifferent between the two solutions?
- 7 MR. SANDOR: I would fall back on Ronald
- 8 Coase's arguments about Pigou. And he said Pigou was
- 9 never clear. Therefore, he could never clearly be
- 10 wrong. And with a side pocket, I would take the
- 11 argument he wasn't the first to talk about trading. He
- 12 talked about flexible mechanisms, taxes, and subsidies.
- 13 But, in fact, your question is right because most of
- 14 the markets, including the E.U. ETS and California,
- 15 have taxes, subsidies, and markets. And, in fact, they
- 16 both contribute to attacking environmental
- 17 externalities.
- MR. KIERSTEAD: Thank you.
- 19 I would just add on that it is much better to
- 20 allow the market to determine the price of CO_2 , for
- 21 example, than a government. It is much easier to
- 22 reduce a cap of a program than it is to increase a tax.

- 1 CHAIRPERSON WIGGINS: Dan?
- 2 MR. DUNLEAVY: Thank you. It is about the
- 3 LCFS. So in 2018, I believe it surpassed the dollar
- 4 value, the cash dollar value, of the RFS. While I see
- 5 the open interest and volume growing, it is still very
- 6 small. As a company that is kind of on the fringe of
- 7 that space and when you see those kind of dollars,
- 8 looking to invest, we called a couple of prominent
- 9 investment banks and asked, "Can you make a market on
- 10 LCFS for a hedge, right?" It was basically crickets
- 11 across the board. So I don't know if they don't know
- 12 about it, don't care, or they have their hands tied by
- 13 regulators.
- 14 So what do you see as the path to growing
- 15 liquidity and open interest in that LCFS product?
- 16 MR. KIERSTEAD: It is a good question. Thank
- 17 you.
- 18 And if you think RGGI is in its infancy, LCFS
- 19 is much newer. The futures contract we listed, which
- 20 is cash-settled, not physically-delivered, was listed
- 21 in May of 2018. So there is not much data there at
- 22 all. The market is still physical, mostly bilateral.

- 1 So the data may be difficult to source, but it is
- 2 certainly -- when my phone rings, it is one of the most
- 3 frequently asked questions. So it will get there. It
- 4 is just a matter of time.
- 5 MR. HEINLE: My question comes, Mike, from
- 6 your presentation, but I would be happy to have any of
- 7 the panelists answer it. You talked a lot about
- 8 increasing volume in these markets. Can you talk a
- 9 little bit about what effect the increase in volume had
- 10 on price and volatility?
- MR. KIERSTEAD: Absolutely. So I think when
- 12 you look at the policy of the programs, so, for
- 13 example, looking at the Virginia election on Tuesday,
- 14 the underlying price of the RGGI futures contract,
- 15 which on that day was \$5.61. It went up 14 cents in 1
- 16 day after the result of that election, which is 2 and a
- 17 half percent in 1 day, not a massive increase.
- 18 So when you look at California carbon, late
- 19 in Q4 of 2017, they laid a pathway to 2030, which
- 20 allowed the market to be extended a decade; runway for
- 21 participants that come in. There is a floor mechanism
- 22 that the price of carbon will increase every year.

- 1 So I just think that as that pathway was
- 2 extended, more participation flowed into that market.
- 3 MR. SCARBROUGH: I think to a certain extent,
- 4 too, one of the things you have seen is that if you
- 5 followed the policy on a state-by-state basis in these
- 6 RPS markets as they have increased, some of the
- 7 renewable targets, you have seen price movement in the
- 8 REC market. So for example, Maryland solar was trading
- 9 a year ago for about \$10 a megawatt hour, trading I
- 10 think last I saw \$70 to \$80 a megawatt hour. So there
- 11 have been some markets where we have seen significant
- 12 price movement in the market, but, generally speaking,
- 13 even with California volumes have picked up, open
- 14 interest has picked up in that market, and historical
- 15 volatility has hovered recently in about 10 percent, 10
- 16 to 11 percent, so not tremendously volatile market, but
- 17 in large part this is going to be based on the
- 18 regulatory and policy developments in those specific
- 19 markets.
- 20 CHAIRPERSON WIGGINS: Do we have any comment
- 21 from anyone on the phone?
- [No audible response.]

- 1 CHAIRPERSON WIGGINS: Comments and questions
- 2 from the EEMAC Members? Yes, Ben?
- 3 MR. JACKSON: Ben Jackson from
- 4 Intercontinental Exchange. Thank you.
- 5 I think the common thread that I have heard
- 6 from our peers and colleagues here from some of the
- 7 comments that have been made that I can't emphasize
- 8 enough are comments such that as -- these contracts
- 9 aren't created in a lab. They are not done in a
- 10 vacuum. For any of us up here as exchange operators,
- 11 they have to be done in close cooperation with our
- 12 regulators, understanding the regulatory backdrop, but
- 13 also very, very close partnership with the commercial
- 14 traders, the people that are actually in that physical
- 15 market making and taking delivery every single day.
- 16 They are the ones that know where price formation
- 17 happens because what is most important to them is the
- 18 hedge that production or consumption risk at the point
- 19 of where they have to make or take delivery. So having
- 20 the commercials at heart, if you do that right, you
- 21 partner with the regulators, you can incubate new
- 22 innovation for the derivatives markets and answer a lot

- 1 of the questions that people had from that first panel.
- 2 So, absolutely, the futures markets should
- 3 play a role here. Myself and our peers, that is our
- 4 job, to partner with all of you to continue to provide
- 5 that innovation.
- 6 And the last thing I would really highlight
- 7 that, Dr. Sandor, you said -- I thought you absolutely
- 8 nailed this, as you always do -- futures markets are
- 9 organic living things. And they change. They modify
- 10 because the underlying market that they are helping
- 11 people to hedge at the end of the day is also changing
- 12 and evolving. And I see it in every one of our
- 13 markets.
- 14 You take a market like Brent Oil. That is an
- 15 evolving, living marketplace that we have to stay very
- 16 close to the commercial trader to continue to evolve
- 17 that market to maintain its global position as a leader
- 18 in helping people hedge their risk.
- 19 The same is true in natural gas. The same is
- 20 true in the environmental markets that I thought the
- 21 panel did a really good job of describing today.
- Thank you.

- 1 CHAIRPERSON WIGGINS: Commissioner?
- 2 COMMISSIONER BERKOVITZ: One
- 3 question/observation, I guess more of a question.
- 4 Given the difficulty or the multiplicity of factors,
- 5 Dr. Sandor, that you have described, the magic nine, to
- 6 get a contract going. One thing, there is not an
- 7 explicit recognition there or maybe I didn't quite pick
- 8 it up, speculative interest. To what extent?
- 9 Obviously you have to have hedging interest. Generally
- 10 it is thought to be a fundamental prerequisite for a
- 11 successful contract, but, in addition to hedging, if it
- 12 is not adequately balanced, you need speculative
- 13 interest, too. But given this problem of climate
- 14 change and the implications for the global economy and
- 15 the difficulties, the long timeframe potentially and
- 16 money invested to get a contract like that going, on
- 17 the other hand, we see other cryptocurrencies, digital
- 18 commodities, huge amount of money and a huge amount of
- 19 trading into something that is more speculative in
- 20 nature as to what its relevance to the future of the
- 21 planet is at the moment. Now, it may be extremely
- 22 relevant to the future of the planet or whatever, but

- 1 to what extent are these markets driven by speculative
- 2 interest? And how do you explain like what makes one
- 3 market take off almost instantly in a year or two
- 4 versus the 30-year timeframe that you have been talking
- 5 about?
- 6 MR. SANDOR: I had a lot of bruises,
- 7 Commissioner, from getting that wrong. So let me tell
- 8 you what a thought is or three small thoughts. If it
- 9 doesn't have what the industry calls naturals, real
- 10 people who have an economic purpose, it dies like pork
- 11 bellies. You know, it served a role for a certain
- 12 time, and then it was better evolved into hogs and not
- 13 bellies, number one. So if it doesn't have natural
- 14 hedging interest, it ultimately will pass away.
- Two, the amount of speculation needs to be
- 16 categorized in two areas. Okay? Number one and if you
- 17 look at some of the early work by Holbrook Working or
- 18 Roger Gray, what you need is the net hedge long open
- 19 interest, hedge short open interest. And that is going
- 20 to be the net that has to be covered by speculators.
- 21 So if 100 million bushels are demanded by exporters
- 22 that need to be hedged and 80 million bushels are short

- 1 by farmers, you need 20 million to fade or underwrite
- 2 the excess long or short hedger position. So that is
- 3 one kind of -- and a subject of big debate. Certainly
- 4 Keynes has speculated on a backwardation and contango.
- 5 How much do you have to pay those people, what rate of
- 6 return to take the unbalanced hedge?
- 7 The third thing is you need speculators, the
- 8 high-frequency traders, the market makers, the
- 9 liquidity because, in fact, somebody has to bridge the
- 10 gap in the short term between the buy order and the
- 11 sell order that comes in from the hedgers. Right?
- 12 Somebody has to inventory the short mismatch as well as
- 13 the long mismatch. And that is the job of a liquidity
- 14 provider, right? The buy order comes from the hedger
- 15 at 9:02. It comes, the sell order, from the hedger at
- 16 9:04. They would not match but for the liquidity
- 17 provider. So that is necessary. So you have the
- 18 unbalanced hedging based upon naturals. You have the
- 19 unbalanced hedging because the buy and sell orders. So
- 20 you need the short term. And then you benefit only
- 21 from the other speculators who were short-term trend
- 22 traders and things like that who operate algorithms and

- 1 try to do weekly or non-thing.
- 2 But the perfect example -- and I will quit at
- 3 that because it is a discussion hopefully we can have
- 4 over a longer term -- always perplexing that the world
- 5 price of wheat is made on a very small part of the U.S.
- 6 crop. Right? We have hard red. We have soft red.
- 7 And we have spring wheat. The soft red is 500 -- I
- 8 don't know -- 25 percent of the production. I mean,
- 9 wheat is a bread item. And the soft red is a cookie
- 10 wheat. And how is it? It puzzled me as an academic.
- 11 How does cookie wheat determine prices in Stuttgart and
- 12 Beijing and Shanghai when it was so small relative to
- 13 the Kansas City wheat contract, which was a bread
- 14 market? And the difference was speculation, that the
- 15 liquidity was provided. And there was a hard, huge
- 16 hedging interest on both sides. But it wasn't liquid
- 17 enough for the Cargills and the Bunges and the Louis
- 18 Dreyfuses to use.
- 19 So I think if you take a look at wheat
- 20 futures, a lot of spring, soft red, hard red, there are
- 21 good insights there.
- 22 CHAIRPERSON WIGGINS: Thank you all very

- 1 much. Thank you for the comments from the Associate
- 2 Members and the Members. And thank you very much to
- 3 our panelists.
- 4 MS. KNAUFF: At this time, we are a few
- 5 minutes behind. The EEMAC will take a lunch break now.
- 6 We will resume the meeting at 1:45. All EEMAC Members
- 7 and Associate Members that are participating in the
- 8 EEMAC lunch can proceed to the security desk to be
- 9 escorted upstairs to the boardroom on the ninth floor.
- 10 If you are not attending the EEMAC lunch, a list of
- 11 area restaurants is available within your meeting
- 12 folder as well as on the agenda table in the front of
- 13 the room.
- 14 Thank you.
- 15 (A luncheon recess was taken at 12:47 p.m.)

16

- 1 AFTERNOON SESSION
- (1:47 p.m.)
- 3 MS. KNAUFF: Good afternoon. I would like to
- 4 call the EEMAC meeting back to order and turn the
- 5 agenda back over to Dena. Thank you.
- 6 CHAIRPERSON WIGGINS: Thank you.
- 7 During our third and final panel, we will
- 8 hear from market participants about the global energy
- 9 transitions effect on how market participants manage
- 10 risk using both exchange-traded and over-the-counter
- 11 derivatives markets. We will hear from Matt Picardi of
- 12 the Commercial Energy Working Group; Lopa Parikh of the
- 13 Edison Electric Institute; Paul Hughes of Southern
- 14 Company; Bill McCoy of Morgan Stanley; and Jackie
- 15 Roberts from the Consumer Advocate Division of West
- 16 Virginia.
- 17 And with that, Matt, I will turn it over to
- 18 you.
- 19 MR. PICARDI: Thank you very much. Good
- 20 afternoon, Commissioner Berkovitz and Commissioner
- 21 Behnam. Thank you for giving me the opportunity to
- 22 discuss how commercial energy firms use derivatives to

- 1 manage risk during this transition in the energy space.
- 2 Just as a quick reminder, the Commercial
- 3 Energy Working Group is a diverse group of commercial
- 4 firms in the energy industries whose primary activity
- 5 in the physical delivery of energy commodities to
- 6 others, including industrial, commercial, and
- 7 residential customers and utilities.
- 8 Commercial energy firms across all sectors of
- 9 the energy industry are impacted in a variety of ways
- 10 by global efforts to decarbonize the energy sector.
- 11 These efforts cut across the physical energy supply
- 12 chain from power and natural gas sectors to the
- 13 production, process, and consumption of transportation
- 14 fuels. The promotion of renewable resources, and
- 15 reduction of carbon emissions are accomplished through
- 16 voluntary efforts by many of our members and customers
- 17 that we helped accomplish these goals and in response
- 18 to a diverse set of state and Federal mandated
- 19 regulatory requirements as well as regional
- 20 requirements, many of which we heard about this
- 21 morning.
- In this context, overall corporate strategies

- 1 for reducing carbon footprints have identified
- 2 opportunities for commercial energy firms to make
- 3 investments in the development of renewable resources
- 4 and use carbon emission credit products to reduce costs
- 5 and hedge our activities. To place some structure
- 6 around the number of activities that could be covered
- 7 by this topic, as we dove into it and talked about it,
- 8 it was very immense and broad. We ultimately want to
- 9 know about some of the activities in areas we
- 10 participate in the energy and environmental derivative
- 11 space.
- We have taken the following approach. First,
- 13 we have defined certain categories that represent areas
- 14 of risk that commercial energy firms actively manage.
- 15 Next, we then addressed some of the ways commercial
- 16 energy firms use derivatives to manage these areas
- 17 identified for risk exposure.
- 18 Interestingly enough, you probably heard
- 19 about the pillars this morning form Mike Kierstead of
- 20 ICE. Well, you will find that the areas of risk we
- 21 identified match up nicely with his pillars, and we
- 22 didn't coordinate at all.

- 1 First, let me have a quick discussion of the
- 2 power and gas sector. Here we are talking mostly about
- 3 mandated renewable energy or standard or programs that
- 4 are administered at the state level. These RPS
- 5 programs create exposures, not only for commercial
- 6 energy transactions for retail customers but with other
- 7 counterparties. And they also generate internally
- 8 through commercial firms' own operations and energy
- 9 consumption. Thus, at times, we are sellers of these
- 10 products to third parties, but we also have our own
- 11 operations, which require us to comply with a lot of
- 12 these RPS requirements.
- 13 RPS risk exposure can be managed in two ways.
- 14 First, it can be managed through physical channels,
- 15 with procurement and delivery of renewable energy
- 16 certificates, or RECs, which, again, we heard about and
- 17 I think we are going to hear more about from Lopa after
- 18 me. Second, they can be managed through commodity
- 19 derivative markets using available exchange-traded
- 20 futures that result in physical delivery of RECs.
- 21 Next I would like to talk a little bit,
- 22 though, about kind of the dilemma we face in these

- 1 markets. A single standardized national market for
- 2 RECs does not currently exist in the U.S. While there
- 3 are crossover regional markets that accept certain
- 4 RECs, RECs by their nature are the product of state-
- 5 specific regulatory requirements. There is some
- 6 regional acceptance of certain REC products, but much
- 7 of the exposure to the need to participate in REC
- 8 markets that commercial energy face must be managed on
- 9 a state-by-state basis subject to a variety of
- 10 sensitive REC standards.
- 11 Consequently, some of the REC markets are
- 12 somewhat fragmented in that they are neither uniformly
- 13 defined nor are they comprehensive in terms of various
- 14 risk exposures to be managed. And prices for RECs can
- 15 vary substantially in different jurisdictions.
- 16 Even in this environment, there are some
- 17 derivative markets that provide the ability to hedge
- 18 the exposures we face through these activities. And
- 19 for that, they are helpful. So let me give you a quick
- 20 example.
- One commonly traded product that we will be
- 22 seeing on Nodal Exchange or ICE futures, which we

- 1 talked about earlier today and was listed with the
- 2 physical delivery RECs futures contracts, would be the
- 3 PJM tri-qualified renewable energy class I futures
- 4 contract listed by IFUS. Many firms servicing
- 5 electricity customers in this market use these
- 6 certificates to hedge their positions forward to meet
- 7 the requirements.
- 8 Another area where we transact in RECs is in
- 9 the development infrastructure projects. So, for
- 10 example, firms might be developing a wind farm or a
- 11 solar farm at utility level. When we do this and it is
- 12 not subject to a long-term contract, a lot of times we
- 13 are looking at a variety of sources of revenues to make
- 14 this work. So we would be looking at energy market
- 15 prices, capacity market prices, ancillary service
- 16 market prices, but also RECs. And the value of RECs is
- 17 an essential component to this. And so those revenue
- 18 streams are something that we need to look at and then
- 19 see if there are opportunities to hedge.
- When developing renewable resources,
- 21 commercial energy firms sometimes will also enter into
- 22 what they call REC arbitrage, where sometimes you can

- 1 trade out high-value RECs for lower-value RECs and
- 2 enhance the value of a particular project.
- 3 Next I would like to turn to the
- 4 transportation fuel sector. In contrast to the power
- 5 and natural gas sector, depending on their operations
- 6 and segment of the physical supply chain, commercial
- 7 energy firms in the transportation fuel sector can be
- 8 subject to both Federal- and state-mandated design
- 9 programs to reduce carbon emissions. The following
- 10 provides a brief high-level overview of different
- 11 programs that the commercial energy firms must comply
- 12 with, the regulators that they must interact with, and
- 13 the commodity derivative products used to manage those
- 14 identified exposures.
- So, obviously, we have spoken today earlier
- 16 about low-carbon fuel standards, for example, from
- 17 California. Commercial energy firms manage risk
- 18 associated with the purchase and sale and consumption
- 19 of transportation fuels. An example of one of the main
- 20 drivers of this activity flows from LCFS products
- 21 traded physically on platforms and on exchanges to help
- 22 energy companies meet California low-carbon fuel

- 1 standards. The low carbon fuel standard is designed to
- 2 encourage the use of cleaner low-carbon fuels. Similar
- 3 to RPS in the power and gas sector, LCFS is a state-
- 4 mandated program by the California Air Emissions Board.
- 5 Providers of transportation fuels must demonstrate
- 6 under this program that the mix of fuels they supply
- 7 for use in California meet the LCFS carbon intensity
- 8 standards or benchmarks for each annual compliance
- 9 period. Exposure to meeting these requirements can be
- 10 managed with products obtained on exchanges or through
- 11 transactions with counterparties.
- 12 Commercial energy firms have the option of
- 13 utilizing LCFS futures products to mitigate price risk
- 14 exposure associates with LCFS credits and requirements.
- 15 For example, CME's California low-carbon fuel standard
- 16 futures contracts is a financially-settled futures
- 17 contract that can be used to hedge price risk exposure
- 18 associated with quotes from PRIMA, which is what it is
- 19 designated as for the California LCFS index. Similar,
- 20 IFUS California low-carbon fuel standard credit or OPUS
- 21 futures is financially-settled contract that is used to
- 22 hedge price risk exposure related to ethanol and gas

- 1 component spot market prices.
- 2 Also, under the EPA's renewable fuel standard
- 3 program, which is a Federally-administered program by
- 4 the U.S. Environmental Protection Agency in
- 5 consultation with the U.S. Department of Agriculture
- 6 and Department of Energy, commercial energy firms
- 7 participate in the RINs market. The program is
- 8 designated as the Renewable Fuel Standard Program. The
- 9 RFS program is a national policy that requires certain
- 10 volume of renewable fuel to replace or reduce the
- 11 quantity of petroleum-based transportation fuel,
- 12 heating oil, or jet fuel. At a high level, the RFS
- 13 requires renewable fuel to be blended into
- 14 transportation fuel in increasing amounts each year,
- 15 escalating by 36 billion gallons by 2022.
- 16 Each renewable fuel category in the RFS must
- 17 admit lower fuel levels of greenhouse gas emissions
- 18 relative to the petroleum fuel it replaces. There are
- 19 four renewable fuel categories under RFS: biomass-
- 20 based diesel, cellulosic biofuel, advanced biofuel, and
- 21 total renewable fuel.
- The RFS program affects nearly every

- 1 participant in the market for ground transportation
- 2 fuels. In general, there are six classes of actors in
- 3 this market: refiners, who manufacture gasoline and
- 4 diesel; renewable fuel producers, who produce fuels
- 5 generated from renewable biomass; importers, who import
- 6 gasoline, diesel, and renewable fuels; blenders, who
- 7 combine renewable fuels with gasoline and diesel to
- 8 create transportation fuel in the U.S.; retailers, who
- 9 purchase the blended transportation fuel and sell it to
- 10 consumers at gas stations; and, then, the consumers
- 11 themselves.
- 12 Some of these participants are regulated
- 13 directly under the RFS program while others are
- 14 affected only indirectly by its requirements. For
- 15 example, EPA regulations designate commercial energy
- 16 firms, such as refiners and importers of gasoline and
- 17 diesel, as parties required to demonstrate compliance
- 18 with RFS program renewable volume requirements,
- 19 commonly referred to as the obligated parties.
- To implement the RFS program, EPA tracks
- 21 production and use of qualifying renewable fuels using
- 22 the RIN, renewable identification numbers, or RINs.

- 1 RINs are generated by renewable fuel producers or
- 2 importers and are bought and sold or attached to
- 3 renewable fuel until the fuel is purchased by an
- 4 obligated party. At that point, the RIN is separated
- 5 from the fuel and made after we independently bought
- 6 and sold until it is retired to meet obligated party's
- 7 renewable volume obligation. If obligated party has
- 8 more RINs than it needs to meet its renewable volume
- 9 obligations, it may sell or trade the extra RINs or,
- 10 instead, use to bank them for the following year.
- In order to manage exposures to price
- 12 volatility in biofuel markets, commercial energy firms
- 13 transact both biofuel and RINs futures contracts. Both
- 14 CME and IFUS list for trading financially-settled RINs
- 15 futures contracts that allow market participants to
- 16 hedge volatility specifically linked to RINs prices.
- 17 The final area I would like to talk about,
- 18 which was one of the pillars I mentioned earlier, was
- 19 state and regional mandates around carbon. In addition
- 20 to the foregoing commercial energy, firms located in
- 21 certain jurisdictions must manage risks imposed by
- 22 comprehensive carbon emission programs. As previously

- 1 mentioned, they involve the combination of state and
- 2 regional regulatory compliance requirements, such as
- 3 those imposed by the Western Climate Initiative and the
- 4 Regional Greenhouse Gas Initiative, and are cap-and-
- 5 trade programs intended to reduce carbon emissions in
- 6 the power production sector. Generators in the
- 7 participating jurisdictions must demonstrate they have
- 8 enough credits to meet emission targets. While
- 9 physical instruments for these products are credits and
- 10 generators can engage in forward transaction for these
- 11 instruments, they are also exchange-traded futures
- 12 products.
- 13 Prices in these markets are impacted by
- 14 shifts in supply and demand as well as applicable
- 15 regulatory activity that surround these markets.
- 16 Traders transacting in these markets monitor such
- 17 changes and when deemed appropriate in their discretion
- 18 and business judgment use commodity derivatives in some
- 19 cases to manage risk around these things. So CME and
- 20 IFUS list physically-delivered RGGI futures contracts
- 21 for identified vintage years that allow market
- 22 participants to meet applicable RGGI compliance

- 1 obligations.
- 2 The deliverable instruments under these
- 3 contracts are RGGI CO2 allowances equal to the contract
- 4 size delivered through the programs.
- 5 As I previously mentioned, regulatory actions
- 6 have impact on the markets. For example, efforts to
- 7 place a value on carbon markets is also impacting the
- 8 price of physical transaction in certain places and in
- 9 related commodity derivative contracts. So that the
- 10 spot price of energy serves as the underlying product
- 11 for some of the futures contracts traded in
- 12 electricity. As different jurisdictions consider
- 13 carbon pricing, that impacts those forward markets.
- 14 Electricity futures, for example, in New York
- 15 can be impacted by the proposal to add carbon pricing,
- 16 which has been out there for a while. Trading past the
- 17 proposed implementation date or liquidity past the
- 18 proposed implementation date for the New York's carbon
- 19 pricing proposal has diminished a little bit. So that
- 20 is kind of an example of a situation where a public
- 21 policy is having an impact on the energy market itself,
- 22 as opposed to the environmental derivatives. And these

- 1 are the types of things that traders are monitoring.
- 2 So as we consider rules to incorporate the
- 3 price of carbon in different markets, traders have to
- 4 monitor those rules, both in the environmental space as
- 5 well as trading energy products. Traders trying to
- 6 manage long-term exposure to power markets monitor
- 7 these ISO and RTO rule changes that were discussed
- 8 earlier as well as state rule changes that might affect
- 9 the markets.
- 10 Further, if the price of carbon is added to
- 11 the market, then the carbon emissions ultimately could
- 12 decrease and carbon market prices, such as RGGI prices,
- 13 could decrease. My point being there is not only an
- 14 interim effect on the price of energy itself, but it
- 15 could affect the RGGI prices. As we heard earlier,
- 16 there is a state-mandated program in Massachusetts for
- 17 generators to reduce their carbon emissions. So as
- 18 they go along that path and start reducing their
- 19 emissions more and more over time, if supply and demand
- 20 in the RGGI market stays the same, there will be more
- 21 credits. In theory, there will be more credits that
- 22 will be created as a result of these generators

- 1 reducing their emissions due to state-mandated
- 2 programs.
- 3 The different examples presented today
- 4 illustrate that physical environmental products are
- 5 creatures of state, Federal, and at times regional
- 6 programs. They become part of the trading landscape.
- 7 However, the value of these products and the liquidity
- 8 of the markets for them is very much impacted by, as I
- 9 mentioned, regulatory activity at these levels. Thus,
- 10 commercial energy firms that participate in these
- 11 markets must have a vigilant eye on how these events
- 12 impact products they use to manage exposure to the
- 13 clients' requirements.
- 14 So what is the takeaway from this? It is not
- 15 necessarily that the CFTC has a role to affect what
- 16 those folks can do, but they can help commercial energy
- 17 firms manage the risks around this by supporting the
- 18 development of contracts in this space. We heard in
- 19 the previous panel about the efforts to do that and
- 20 based on our experience, we would be very supportive of
- 21 efforts to develop contracts as over time and we go
- 22 through their transition. New environmental products,

- 1 whether they are carbon emission products or REC-type
- 2 products emerge, they are tools that we can use to
- 3 manage the exposure. So we encourage the Commission to
- 4 continue to foster an environment that allows those
- 5 contracts to be created and allows our members to hedge
- 6 our exposures.
- 7 Thank you.
- 8 CHAIRPERSON WIGGINS: Thank you, Matt.
- 9 Lopa?
- MS. PARIKH: Thank you.
- 11 Good afternoon, Commissioners Berkovitz,
- 12 Behnam, and Stump. Thank you so much for the
- 13 opportunity to participate today in this important
- 14 discussion.
- I am here today on behalf of the Edison
- 16 Electric Institute, or EEI. EEI is the association
- 17 that represents all of the investor-owned utilities in
- 18 the United States. Our members provide electricity to
- 19 about 220 million Americans, which is about 72 percent
- 20 of all end-use customers. We operate in all 50 states
- 21 and the District of Columbia and are regulated at both
- 22 the state and the Federal level. As a whole, the

- 1 electric power industry supports more than seven
- 2 million jobs in communities across the United States.
- 3 And our members are committed to providing affordable,
- 4 reliable, and increasingly clean electricity to
- 5 customers now and in the future.
- I want to talk a little bit just to start my
- 7 discussion about the transition because it really kind
- 8 of sets the framework for the discussion that I would
- 9 like to have with you about renewable energy
- 10 certificates and what our members are doing with those
- 11 today.
- 12 So this is an exciting time in the energy
- 13 industry. As it is transitioning from one that was
- 14 predominantly coal to one that is increasingly
- 15 comprised of natural gas and renewable resources. The
- 16 fuel mix is transitioning from one that was 48 percent
- 17 coal in 2018 to one that is now comprised of one-third
- 18 coal, one-third natural gas, and one-third carbon-free
- 19 resources. And this evolution is going to continue
- 20 going forward. Over the past five years, over half of
- 21 the resources that were built in the United States were
- 22 solar and renewables. And our members are increasingly

- 1 becoming involved in contracting for, building, and
- 2 participating in renewable markets as well as using new
- 3 technologies, such as storage, to facilitate the
- 4 integration of these resources.
- 5 Due to these changes, the electric industry
- 6 as a whole reduced the carbon dioxide emissions by 27
- 7 percent below peak 2005 levels. Of that amount, the
- 8 EEI member companies reduced their carbon emissions 37
- 9 percent from 2005 levels. And we are continuing down
- 10 this part going forward. Collectively, our members are
- 11 on a path to reduce carbon emissions by 50 percent by
- 12 2030 and 80 percent by 2050 compared to peak 2005
- 13 levels. And our members are also working with their
- 14 customers, both large and small, to help them meet
- 15 their clean energy goals.
- 16 So I just want to talk a little bit about a
- 17 conversation that was held on the first panel about
- 18 certainty. While regulatory certainty from both our
- 19 Federal and state regulators is very important for our
- 20 member companies, one of the things that wasn't really
- 21 discussed is all of the other components that have gone
- 22 into this transition to renewables.

- 1 Declining costs for technology for wind and
- 2 solar resources; increasing new technologies, such as
- 3 storage or new technologies that allow renewable
- 4 resources to be more controllable, the declining
- 5 natural gas prices the help support the growth of
- 6 renewables. And, most of all, our customer demands are
- 7 constantly asking for more control over and greener
- 8 resources. So all of these components are working
- 9 together to kind of move our industry towards a
- 10 cleaner, a greener use of resources to generate our
- 11 electricity.
- 12 One of the ways that we can meet these
- 13 renewable goals is through the use of renewable energy
- 14 certificates, or RECs. RECs are tradeable, nontangible
- 15 energy commodities. Generally, one REC is equal to one
- 16 megawatt of electrical output from a qualifying
- 17 renewable generation facility. What a REC does is it
- 18 creates a distinction between the underlying
- 19 electricity and the environmental attributes of
- 20 renewable generation. This is important because once
- 21 electrons are put onto the grid, the source of that
- 22 generation is not distinguishable. And so a REC

- 1 certifies that one megawatt of clean energy was placed
- 2 onto the energy grid.
- 3 And from an end-user perspective, which all
- 4 of my members are, a REC is a physical commodity and
- 5 that transactions in RECs, including those on
- 6 exchanges, are all physically-settled for my members.
- 7 So, as has been talked about previously, the
- 8 use of RECs was largely jumpstarted by state
- 9 requirements. Twenty-nine states plus the District of
- 10 Columbia have renewable portfolio standards, and eight
- 11 states have renewable portfolio goals. These are
- 12 standards and goals that my members are required to
- 13 meet. Most of these standards specify the amount and
- 14 type of specific renewable resources or technologies
- 15 that must be procured within a specific timeframe.
- 16 RECs are a way to meet these goals.
- 17 A lot of the states have specific goals that
- 18 require generation to be generated in that state in
- 19 order to qualify for the RPS. So it is very customized
- 20 and particular, and we have to meet whatever the state
- 21 requirements are.
- 22 RECs are also used to meet voluntary goals.

- 1 A large number of our large customers have announced
- 2 publicly goals to be carbon-neutral by X amount of
- 3 time. Our members are working with them to meet that
- 4 goal. Thirty-five percent of our member companies have
- 5 also announced their own goals to be carbon-free within
- 6 an X period of time. A lot of these goals are
- 7 voluntary. And in some cases, they exceed the state
- 8 requirements. And so RECs are used to meet these
- 9 voluntary goals as well.
- 10 So due to the diversity and specificity of
- 11 the requirements of many of these goals, REC contracts
- 12 tend to be customized products. The rise of the
- 13 voluntary markets has also increased the specialization
- 14 of REC contracts and as counterparties increasingly
- 15 seek to match their over-the-counter product with the
- 16 specific requirements of that customer.
- 17 The important thing about RECs is that they
- 18 are certified and tracked to ensure that the energy
- 19 being placed on the system is actually coming from a
- 20 renewable resource. The Center for Resource Solutions
- 21 under their Green-e Energy program administers a
- 22 program to ensure that RECs are probably accounted for

- 1 and that no double counting takes place. The process
- 2 requires third party verification to be performed by
- 3 either an independent certified public accountant or a
- 4 certified internal auditor which operates tracking
- 5 systems.
- 6 There are now tracking systems that cover the
- 7 entire United States. These include the Western
- 8 Renewable Energy Generation Information System, which
- 9 covers the western part of the United States, from
- 10 Colorado to California. You have the North America
- 11 Renewable Registry, which covers the middle of the
- 12 United States, all the way from North Dakota to
- 13 Florida. ERCOT covers Texas. The generation
- 14 attributes tracking system, or GATS, is used in the PJM
- 15 states. Individual states also run their own tracking
- 16 systems. And these include Michigan, New York, and
- 17 North Carolina. And then NEPOOL provides tracking for
- 18 all of the states in the New England area. So there
- 19 are tracking systems that are certified that can track
- 20 these attributes from inception to final purchase.
- 21 So, just to kind of dig down a little deeper
- 22 into how these REC markets actually work -- and I am

- 1 talking about RECs, rather than the carbon markets and
- 2 RGGI because those have been talked about a lot. My
- 3 members span the entire country, and RECs are used by
- 4 members across the entire country, even those outside
- 5 of RTO/ISO markets.
- 6 So since D.C. is located in PJM, I am going
- 7 to use their generator attribute tracking system as an
- 8 example of how this REC system works and how these
- 9 attributes are tracked. So, per PJM, GATS is an
- 10 independent centralized generation registry and
- 11 tracking service for both the emissions data and
- 12 renewable energy credits. GATS is a paid subscription
- 13 service that creates and tracks a generator-specific
- 14 electronic certificate for every megawatt hour of
- 15 electricity produced by a generator. The system tracks
- 16 the environmental and emission attributes of generation
- 17 along with the ownership of credits as they are traded
- 18 or used to meet governmental renewable energy
- 19 standards.
- 20 As each megawatt hour of electricity is
- 21 generated, the system collects data on the generation
- 22 source and links it to data on that source's owner,

- 1 location, fuel source, air emissions rate, eligibility
- 2 for state environmental programs, and any other
- 3 relevant information. From this data, the system
- 4 creates an electronic certificate with a unique serial
- 5 number for each megawatt hour generated. The system
- 6 maintains a database of all the certificates. Each
- 7 certificate with the environmental attribute it
- 8 represents can be bought, sold, or transferred by
- 9 electricity market participants and other parties, such
- 10 as environmental groups sometimes get involved.
- 11 The system tracks the transfer of each
- 12 renewable credit from owner to owner until the credit
- 13 is retired by final purchase or use of the megawatt of
- 14 generation. The value of that individual REC is
- 15 largely tied to the requirements of state law and the
- 16 demand for that specific REC. So, for example, if
- 17 state requires that X amount of renewable energy used
- 18 to meet their RPS standard has to be generated in that
- 19 state, that REC might have a higher value than one that
- 20 can be used to meet an RPS standard anywhere in the
- 21 United States.
- 22 So most state renewable portfolio standards

- 1 require sellers of electricity that purchase a certain
- 2 amount of RECs equal to a percentage of their overall
- 3 electricity sales. The value of RECs in a particular
- 4 state is dependent on the amount of RECs a state
- 5 requires electric sellers to purchase and the amount of
- 6 qualifying RECs available for purchase. Some states
- 7 require that the RPS obligation can only be met by RECs
- 8 produced from renewable generation located within the
- 9 state, which further increases demand for that
- 10 particular REC.
- In the past, most RECs came from large-scale
- 12 resources, but with the growth of rooftop solar and
- 13 other behind-the-meter resources and with the growth of
- 14 smaller generators entering into the market, some
- 15 parties aggregate the energy created by these smaller
- 16 resources to sell a larger aggregated amount to
- 17 customers or smaller parties will just sell their
- 18 smaller amounts of RECs to individual customers.
- 19 With the changes in the market and increasing
- 20 renewable requirements, the markets for RECs have
- 21 expanded. While those able to meet credit requirements
- 22 can transact on ICE or Nodal Exchange, most

- 1 transactions are still done as bilateral transactions
- 2 in a brokered market. These brokered transactions
- 3 allow counterparties to negotiate specific credit and
- 4 contract terms and to negotiate specific criteria that
- 5 will meet the needs of that state.
- 6 The REC markets have a variety of
- 7 participants of all sizes, not all of which are large
- 8 sophisticated market participants that the centralized
- 9 markets are designed for. Exchanges typically have
- 10 fees and collateral requirements that many
- 11 counterparties may find cost-prohibitive.
- 12 In addition, exchanges have a selection of
- 13 REC compliance products that they currently offer, but
- 14 they do not list all of the compliance or voluntary
- 15 products that stakeholders are seeking in the
- 16 marketplace. And so, as with most transactions,
- 17 bilateral transactions are the way to get these
- 18 customized products.
- 19 So, going forward, RECs are still going to be
- 20 used as more states and companies adopt renewable
- 21 standards or carbon-free goals. This demand is likely
- 22 to increase. The biggest challenge going forward is

- 1 meeting the increasingly complex regulatory
- 2 requirements imposed by the states on EEI members as
- 3 they are largely tasked with ensuring that the state
- 4 goals are met.
- 5 Due to the specialized nature of the product
- 6 and the number of small generators participating in the
- 7 market, most of the transactions are continued and
- 8 likely to be brokered.
- 9 So thank you for the opportunity to
- 10 participate in this discussion today. And I am happy
- 11 to answer any questions.
- 12 CHAIRPERSON WIGGINS: Thank you, Lopa.
- 13 Paul?
- 14 MR. HUGHES: First of all I want to thank
- 15 Commissioner Berkovitz and the rest of the
- 16 Commissioners for the opportunity to participate in
- 17 this today.
- 18 My name is Paul Hughes, and I am the
- 19 Generation Policy Manager for Southern Company. And I
- 20 have had the pleasure of being an Associate Member here
- 21 for several years now. And it has always been a very
- 22 beneficial and educational process, and meetings have

- 1 been very educational in the past. And hopefully we
- 2 will continue to do that over the next few minutes.
- 3 As a bit of background, Southern Company
- 4 serves approximately nine million customers through its
- 5 subsidiaries. Specifically, the company provides
- 6 clean, safe, reliable, and affordable energy through
- 7 electric utilities in three states; natural gas
- 8 distribution companies in four states; natural gas
- 9 peaking and storage operations in nine states; a
- 10 competitive generation company serving wholesale
- 11 customers these are large, could be large industrial,
- 12 large technology customers, wholesale customers across
- 13 the country; a distributed energy infrastructure
- 14 company; as well as a fiber optics network and
- 15 telecommunications services. We take pride in
- 16 providing excellent customer service, high reliability,
- 17 and affordable prices that are below the national
- 18 average.
- 19 And, just as a note, we have talked a lot
- 20 about RTOs and non-RTOs. We are a vertically
- 21 integrated company, and we operate in a bilateral
- 22 market. And we generally -- typically for the most of

- 1 our transactions, whether they be energy or RECs in
- 2 this case or over-the-counter.
- 3 As we will discuss here in a moment as I walk
- 4 through a few slides, Southern Company has set a long-
- 5 term goal of low- to no-carbon operations by 2050 on an
- 6 enterprise-wide basis. On our path to 2050, we have
- 7 set a goal of 50 percent reduction from 2007 levels and
- 8 CO₂ emissions by 2030. Achieving these goals will be
- 9 dependent on a multitude of factors, including natural
- 10 gas prices and the pace and extent of improvements in
- 11 energy technology.
- 12 Our three focus areas to reduce emissions
- 13 include continuing to pursue a diverse portfolio of
- 14 energy resources, including low-carbon and carbon-free
- 15 resources; continued R&D efforts focused on
- 16 technologies that lower greenhouse gas emissions; and
- 17 constructive engagement with both state and Federal
- 18 policymakers, regulators, and, of course, our
- 19 investors, and, most importantly, our customers. So,
- 20 to that end, our portfolio mix has changed
- 21 substantially over the last decade with significant
- 22 investment in low-carbon and carbon-free energy assets.

- 1 Along with our partners, we are building the
- 2 first new nuclear units in the U.S. in more than 30
- 3 years. These units will add 1,000 megawatts to our
- 4 existing 3,700-megawatt portfolio of carbon-free
- 5 nuclear generation. Our state-regulated electric
- 6 operating companies' renewable resource portfolio
- 7 includes more than 1,000 megawatts of solar, 3,000
- 8 megawatts of hydroelectric, and nearly 200 megawatts of
- 9 biomass.
- 10 Southern Power, our competitive generation
- 11 subsidiary, owns approximately 1,800 megawatts of
- 12 solar, 1,600 megawatts of wind, and 100 megawatts of
- 13 biomass. We expect to own or otherwise control 16,000
- 14 megawatts of carbon-free and carbon-neutral generating
- 15 capacity by 2022. Southern Company is, without
- 16 question, contributing to the growth of this renewable
- 17 space that we have been talking about. That growth has
- 18 directly led to the increase in our renewable energy
- 19 credit program and our participation in voluntary
- 20 markets.
- 21 And so I want to take just a couple of
- 22 minutes to walk through a few slides and have a little

- 1 bit more of a discussion, instead of me reading an
- 2 opening statement, and let you know kind of what we are
- 3 doing. So if you all bear with me, I will walk through
- 4 a couple of these slides.
- 5 Disclaimer: We are going to talk some
- 6 forward-looking information. Please don't put too much
- 7 emphasis on it. An attorney in the room could
- 8 translate that into something that would sound a lot
- 9 more lawyerly, but I think everybody knows what I am
- 10 talking about.
- 11 A little bit about Southern Company. I am
- 12 going to focus on the electric side of the business
- 13 because that is where our renewable energy credits are
- 14 generated. We do have a regulated, state-regulated,
- 15 utilities: Alabama, Georgia, and Mississippi. And
- 16 that is what you see primarily in this chart. At the
- 17 bottom, though, you will see a lot of assets that
- 18 stretch out kind of the southern portion of the U.S.
- 19 all the way across over to California. And that is
- 20 primarily through Southern Power, our competitive
- 21 generation subsidiary. So think of them like an
- 22 independent power producer.

- 1 So of that, you could say it is about 4.7
- 2 million electric customers. It is around 44,000
- 3 megawatts of generating capacity. And then when you
- 4 throw in the natural gas side of the business, there is
- 5 1,500 billion cubic feet of combined natural gas
- 6 consumption in three-foot volume.
- 7 So we have changed dramatically in what our
- 8 company looks like the time that I have been an
- 9 Associate Member here. So it has definitely been an
- 10 evolving market, and we have certainly been an evolving
- 11 company through that.
- 12 So let me tell you what I did. So when I was
- 13 asked, "Hey, would you come talk about renewable energy
- 14 credits a little bit and what is going on in the
- 15 renewable space?" I went out to the Green-e website.
- 16 You heard Lopa mention that a little bit. They are one
- 17 of the programs that administer the voluntary program.
- 18 And they have Green-e-certified, and they have Green-e
- 19 -- I was talking with somebody about this at the break
- 20 -- Green-e-certifiable or Green-e-eligible facilities.
- 21 And a lot of times, the terminology can get a little
- 22 bit confusing. Green-e-certified means that they

- 1 actually went to the Green-e, and they actually paid
- 2 for somebody to do an audit. Green-e-eligible or
- 3 Green-e-certifiable will show up in some of these state
- 4 platforms, and we check a box so they can be tracked
- 5 accordingly. That is essentially a self-certification,
- 6 if you will, saying that the generator that is creating
- 7 these RECs meets a standard that is outlined by
- 8 Green-e. And so that is what we talk about. A lot of
- 9 times, we talk about the voluntary markets as the
- 10 Green-e-eligible energy credits.
- 11 So I wanted to show a couple of slides that
- 12 are really not mine. They came directly from CRS as
- 13 the parent nonprofit of Green-e. So you can see -- and
- 14 there is a general thing I just want you to pick up on.
- 15 Green-e-certified, retail sales increased 24 percent
- 16 from 2016 to 2017. This really should be no surprise
- 17 to anybody in here. We have been talking about it all
- 18 morning. Right? This market is growing. And we have
- 19 seen here an average of 16 percent of the most recent 4
- 20 years. REC sales makes up the majority of those. If
- 21 you look at the chart, that is kind of the big chunk in
- 22 the blue, is the RECs, the PPAs, and the VPPAs.

- 1 So RECs are often going to be sold directly.
- 2 Sometimes they are bundled inside of a power purchase
- 3 agreement. Sometimes, they are part of what is listed
- 4 there as a VPPA, or a virtual PPA. And so there may be
- 5 a financial product that takes the physical
- 6 certificates, and that delivers to somebody else.
- 7 So the general overall impression I guess I
- 8 want you to walk away from here is the demand for RECs
- 9 is going up, but the supply for RECs is also
- 10 increasing. And you are seeing that as we are building
- 11 more and more renewable generation. It is going to be
- 12 a theme we have heard all morning. But the demand is
- 13 increasing as well.
- 14 Flip to the next chart. The majority of the
- 15 growth that we are seeing and people purchasing is
- 16 coming from the commercial sector, so a lot of growth
- 17 in the commercial sector as well as growth in the
- 18 wholesale sector. And the wholesale players in this
- 19 market may be a large technology company. You know, it
- 20 is a Google, an Apple, an Amazon, somebody like that.
- 21 They want to have -- whether they are mandated to or
- 22 not, they want to be able to stamp and certify their

- 1 products, "Hey, we are completely renewable energy."
- 2 So there is a demand there for these types of products.
- 3 One thing that we also have seen a lot of --
- 4 and a lot of our sales, we are pretty basic. So you
- 5 will see the numbers when I show our numbers. We are
- 6 selling a lot through the broker market primarily, but
- 7 we also know that there is a lot of aggregators. So it
- 8 is because the market is so fragmented, it is not
- 9 homogenous, it is so fragmented you will have an
- 10 aggregator to kind of fill the space. I am just going
- 11 to kind of make up an example here if you bear with me.
- 12 So let's say Minnesota has some very strict,
- 13 very different type of state policy in renewables and
- 14 they have a very specific definition of what the
- 15 vintage of a REC has to be. And let's say it has to be
- 16 a wind REC that has a vintage of 18 months. And so
- 17 that aggregator will go around the country on behalf of
- 18 maybe an industrial or another large wholesale company.
- 19 It will go around the country and try to put together a
- 20 package of RECs that meet that profile that that
- 21 company then can use in Minnesota or whatever state it
- 22 may be. So there is an aggregator profile out there.

- 1 So I think that is important. You all should be aware
- 2 of that.
- 3 One thing is when we talk about selling RECs,
- 4 as a utility or as a group of utilities, a lot of
- 5 times, we will use those RECs ourselves, even though
- 6 we're in an area where everything is voluntary. We
- 7 will use those RECs ourselves, but we also know that we
- 8 have customers who are very much interested in those
- 9 RECs. And then when we look at maybe the wholesale
- 10 side of things a little bit farther out West, there is
- 11 a big interest in bundling those RECs with traditional
- 12 wholesale power projects. So not every REC
- 13 transaction, not every REC that is generated is going
- 14 to be taken up and placed on a market or an exchange or
- 15 even the voluntary markets.
- 16 A little bit more background, and Lopa did a
- 17 great job of kind of setting forth the industry. I
- 18 think we fit the profile that she described. So, as I
- 19 mentioned in my opening statement, Southern has a long-
- 20 term goal of low- to no-carbon operations by 2050. And
- 21 you can see that illustrated in the chart, and you can
- 22 see how our electricity generation mix is changing

- 1 pretty dramatically.
- 2 It has changed dramatically already. You can
- 3 see that 2007, we were 69 percent coal, 69 percent.
- 4 Now we are below 30 percent. But the one to watch, as
- 5 you see, in 2007, we were 1 percent renewables. Now we
- 6 are at 10 percent renewables. That number is expected
- 7 to grow substantially over the next several decades.
- 8 So now let's talk about where are we and what
- 9 do we do. If you look at the REC sales we have here at
- 10 Southern, you will see that we have grown pretty
- 11 substantially, flattened off the last year. One thing
- 12 I should mention before I forget this is the sales that
- 13 we make, if they are not already used by utilities, the
- 14 sales that we make by the utilities, they are going
- 15 back to the customers. So they are going to be offset
- 16 against a fuel clause or something like that. So all
- 17 of this is really done on behalf of the customer.
- 18 Transactions for us, as I mentioned, are with
- 19 brokers typically. That means they are bilateral.
- 20 Less than a third of the RECs that are generated by
- 21 Southern assets are actually sold on the open market.
- 22 And so it goes back to they are already being embedded

- 1 in products that we have with our customers.
- I mentioned the aggregators. I will see a
- 3 couple of notes here, make sure I didn't forget to tell
- 4 you guys. Physical contract. Oh, pricing. Pricing
- 5 came up a couple of times this morning. And I want to
- 6 just mention this. So I asked the person that is
- 7 responsible at Southern for administering all of our
- 8 REC transactions, "Hey, give me an idea on what pricing
- 9 is like. What do you see?" And so I thought it was
- 10 pretty fascinating because when we talked about the
- 11 non-homogenous nature of RECs -- so they have different
- 12 vintages. Some states like wind better than solar.
- 13 Some like solar better than wind. We are always trying
- 14 to package this very specific product. It is not just
- 15 a generic REC is a REC is a REC. It just really
- 16 depends on the attributes around that REC.
- 17 So then what I found is kind of interesting.
- 18 In a voluntary market, I am looking at -- this happened
- 19 to be somewhere out in Texas, I believe -- as low as 60
- 20 cents on the bid side. Sixty-nine cents is a mid.
- 21 Seventy-two cents is the -- we are taking less than a
- 22 dollar. If I go look at RECs that is under a solar REC

- 1 specifically and another part of the country, we are in
- 2 \$415. Right? So the variation, I can't emphasize
- 3 enough how much variation we actually have in this
- 4 market. All I think that tells you is this is a very
- 5 nascent period in the markets.
- I am not saying that we haven't had
- 7 environmental markets for a long period of time, simply
- 8 saying we are in the -- to me, it feels like somebody -
- 9 the incubator phrase stuck with me earlier this
- 10 morning. There is a little bit of an incubator phrase
- 11 it feels like we are going through. Where it is going
- 12 to go, I am not sure, but as long as it is non-
- 13 homogenous, that is always going to be a bit of a
- 14 challenge.
- So, as I kind of move on, what does that mean
- 16 for us? And what do we expect in the future? We
- 17 expect states to continue either to establish or set
- 18 higher bars for their environmental goals. We expect
- 19 the demand for renewable energy to continue to grow,
- 20 but we also expect the prices are going to continue to
- 21 drop. And we expect this continuing change that Lopa
- 22 mentioned in our generation mix to change considerably.

- 1 And I think everybody feels the same way.
- 2 But if I was going to come back to you guys
- 3 and say, "What should we do as regulators at this point
- 4 in time?"; number one, I would say, "Hey, whatever we
- 5 are doing, don't forget about the customer." Right? I
- 6 think every time I have talked to this group, I have
- 7 tried to mention that our customer makeup is 45 percent
- 8 of our customer base has \$45,000 a year per household.
- 9 We have to think about the customer. Any impact it
- 10 creates more costs for our customer. We need to
- 11 consider that very, very carefully.
- 12 Secondly, recognize and account for regional
- 13 differences. When it comes to renewable energy, the
- 14 regional differences matter. They are material. What
- 15 things look like in Washington state looks a lot
- 16 difference than it looks like in Georgia or Alabama.
- And, then, finally, let's be flexible and
- 18 careful with timetables and targets as we move forward.
- 19 I think there are lots of opportunities to do this and
- 20 to move forward with these markets. I do think they
- 21 are going to continue to develop and mature. But we
- 22 have to do it in a very methodical, careful way. And

- 1 that would kind of be my encouragement to the group.
- That is all I have got, welcome questions.
- 3 CHAIRPERSON WIGGINS: Thank you, Paul.
- 4 Bill?
- 5 MR. McCOY: Good afternoon. And thank you,
- 6 Commissioner Berkovitz, Commissioner Behnam, and
- 7 Commissioner Stump. And thank you for this opportunity
- 8 to let me speak from the perspective of a bank-
- 9 affiliated swap dealer that also has with it an entity
- 10 that has market-based rate authority with the Federal
- 11 Energy Regulatory Commission, particularly in the
- 12 context of how we, firms like us, provide risk
- 13 management services that involve both the underlying
- 14 physical commodities you will hear me speak about
- 15 bringing together much of the products we talk about,
- 16 RECs and cap-and-trade, as well as the derivatives
- 17 markets that are tied to those.
- 18 Financial services firms, like Morgan
- 19 Stanley, are in a unique position to address
- 20 environmental and social challenges. Environmental and
- 21 social management is a priority for such firms. And,
- 22 if you will permit me, I would like to just quote from

- 1 Morgan Stanley's environmental and social policy
- 2 statement, "Morgan Stanley recognizes that global
- 3 sustainability challenges, including human rights,
- 4 resource scarcity and climate change, can result in
- 5 significant impacts if left unaddressed. In light of
- 6 these challenges, sustainable global development is of
- 7 critical importance. By considering environmental,
- 8 social, and governance factors in our business
- 9 activities, we help mobilize capital to deliver
- 10 sustainable growth and long-term value for our clients
- 11 and for society.
- "Given our position as one of the world's
- 13 leading financial services firms, we have a
- 14 responsibility to manage and leverage our resources in
- 15 a way that helps build a sustainable future. We
- 16 mobilize capital to scale sustainability solutions,
- 17 drive private capital into sustainable investments, and
- 18 address environmental and social risks across the firm.
- 19 "To that end, we have dedicated substantial
- 20 resources to this work. We have committed to marshal
- 21 \$250 billion in low-carbon financing by 2030 and to
- 22 become carbon-neutral by 2022, with an aim to source

- 1 100 percent of our global operational energy needs from
- 2 renewable energy and to offset any remaining
- 3 emissions." So that statement is part of much of the
- 4 activities throughout firms like Morgan Stanley, and
- 5 hopefully it continues engendering throughout.
- 6 As part of these commitments, Morgan Stanley
- 7 regularly helps renewable energy project developers
- 8 finance this construction and operation of their
- 9 projects. So, for example, Morgan Stanley's
- 10 commodities business through one of its swap dealers,
- 11 Morgan Stanley Capital Group, Inc., or MSCGI, supports
- 12 renewable energy deployment across the United States,
- 13 providing offtake agreements and hedging products for
- 14 new wind farms, solar installations, and the like.
- Developers of renewable energy projects, such
- 16 as wind farm installations, rely on the risk management
- 17 services of swap dealers like MSCGI in order to assure
- 18 investors and lenders that revenues will support
- 19 project loan repayment. Given that the energy price
- 20 hedge often concerns long-dated power deliverable in a
- 21 remote region, the market may be very illiquid. By
- 22 entering into derivatives with a swap dealer to protect

- 1 against falling power prices, the wind farm developer
- 2 achieves stable cash flows, thus demonstrating its
- 3 ability to service its debt load and complete the
- 4 construction.
- 5 As an alternative to financially-settled
- 6 derivatives, marketers with FERC's market-based rate
- 7 authority may enter into a physical offtake agreement
- 8 with a renewable energy project, thereby additionally
- 9 providing the developer the assurance of a long-term
- 10 buyer of the project's output. When we look, the
- 11 combination of between derivatives and hedging products
- 12 and offtake, et cetera, various agreements, in 2018,
- 13 for example, MSCGI provided long-term hedging
- 14 transactions to nearly 750 megawatts of renewable
- 15 energy projects.
- In addition to providing hedging transactions
- 17 in the form of derivatives and power offtake agreements
- 18 with renewable energy projects, dealers and marketers
- 19 also purchase renewable energy certificates, RECs, as
- 20 we have been discussing today. These RECs are
- 21 available both for the firms' own needs as well as for
- 22 resale to our clients. RECs are used by clients as a

- 1 credit against their own power usage to demonstrate
- 2 that they are procuring green energy for, as we have
- 3 heard, both voluntary and regulatory compliance
- 4 programs. For example, many utilities, our clients,
- 5 other load-servicing entities seek RECs to satisfy
- 6 their requirements under the state renewable portfolio
- 7 standards we have been discussing.
- 8 The requirements vary state by state, with
- 9 the requirements of many states increasing over time.
- 10 So RECs can be a flexible means for these organizations
- 11 to achieve their clean energy goals, but in many
- 12 instances, we know that RECs may be purchased
- 13 separately from associated electricity and
- 14 independently matched with electricity consumption. So
- 15 in states where the current amount of renewable energy
- 16 production is low, relative to the high percentage
- 17 requirements of that state's renewable portfolio
- 18 standards, the ability to purchase RECs and electricity
- 19 separately offers and attractive alternative to
- 20 organizations that may already be in long-term power
- 21 purchase agreements. Dealers and market makers and
- 22 RECs can identify opportunities to buy RECs from

- 1 renewable energy producers in one region and sell those
- 2 RECs to utilities and other commercial end-users in
- 3 other regions to satisfy their overall clean energy
- 4 strategy.
- 5 Dealers and market makers are also active
- 6 market participants in the cap-and-trade programs, such
- 7 as the Regional Greenhouse Gas Initiative, the
- 8 California greenhouse gas emissions cap-and-trade
- 9 program, and European Union emissions trading system.
- 10 While these programs all differ in form and design,
- 11 they generally provide for the establishment of
- 12 mandatory caps on the total amount of certain
- 13 greenhouse gases emitted by the certain parties in
- 14 their installations that are subject to the programs.
- 15 These caps are designed to decline over time, to foster
- 16 greenhouse gas reductions. The programs typically
- 17 allow for compliance with these caps through this
- 18 render or retirement of emission allowances. And such
- 19 emission allowances are allocated in auction to market
- 20 participants; in addition emission allowances are
- 21 tradeable, which contributes to the development of a
- 22 market price intended to encourage the lowest-cost

- 1 means of reducing greenhouse gas emissions.
- The ability of dealers and market makers to
- 3 participate in these markets promotes liquidity and
- 4 efficient transfer of such allowances from market
- 5 participants that have more holdings than they need to
- 6 those market participants that need them.
- 7 Through greater liquidity and efficiencies in
- 8 the establishment of transparent market prices, the
- 9 emissions market establishes price signals to encourage
- 10 more development and renewable energy production and
- 11 potentially improve technologies to produce greenhouse
- 12 gas emissions.
- 13 Swap dealers and market makers like MSCGI use
- 14 the environmental derivatives markets in varying ways.
- 15 Because of timing and locational differences associated
- 16 with the source and ultimate buyer of the RECs or the
- 17 emission allowances, market makers in these products
- 18 may use the futures contracts based on such
- 19 environmental products to hedge their purchase and
- 20 sales.
- 21 Market participants may also make or take
- 22 delivery of the emissions allowances upon expiration of

- 1 the futures contract to satisfy the need for such
- 2 allowances. And, additionally, swap dealers may design
- 3 swaps, options, and other OTC derivatives that
- 4 reference prices to environmental futures and
- 5 environmental products.
- 6 At Morgan Stanley, we are seeing an increased
- 7 demand for environmental derivatives. Now, this demand
- 8 is coming not only coming from the traditional
- 9 producers or commercial end-users that are consuming
- 10 energy. Rather, we are seeing increased interest from
- 11 a wider universe of corporations, municipalities,
- 12 investors, and other parties that are given greater
- 13 consideration to environmental, social, and governance
- 14 risk and products. However, the derivatives markets
- 15 and environmental products are still in their early
- 16 stages of growth, at least in the United States, where
- 17 such markets do not appear as deep and active as the
- 18 European counterparts.
- 19 As the demand grows, the markets for both
- 20 exchange-sponsored and OTC derivative products likely
- 21 will grow. The Commission is well-positioned in its
- 22 current framework for regulation oversight of the

- 1 derivatives markets.
- 2 In its 2012 joint rulemaking with the
- 3 Securities and Exchange Commission providing for
- 4 definitions of swap and securities-based swap and other
- 5 terms, the Commission declined to provide a definition
- 6 of "environmental commodity." However, the Commission
- 7 provided an interpretation regarding the circumstances
- 8 under which agreements, contracts, or transactions in
- 9 environmental commodities will satisfy the forward
- 10 exclusion from the swap definition.
- 11 The Commission stated that an agreement,
- 12 contract, or transaction in an environmental commodity
- 13 may qualify for the forward exclusion from the swap
- 14 definition if the transaction is intended to be
- 15 physically-settled. Meanwhile, as an intangible
- 16 commodity, the Commission indicated that an
- 17 environmental commodity that satisfies the terms of the
- 18 interpretation would be viewed as a nonfinancial
- 19 commodity. Consequently, there is an existing
- 20 regulatory framework for both futures contracts and OTC
- 21 derivatives transactions, referencing an environmental
- 22 commodity, namely the framework of regulation of

- 1 futures contracts and OTC derivatives of nonfinancial
- 2 commodities.
- 3 As demand for environmental products grows,
- 4 it is important that regulatory agencies and other
- 5 governmental bodies appreciate the public policy goals
- 6 that would foster the ongoing success and growth of the
- 7 markets in environmental products and their derivatives
- 8 and, at a minimum, take actions not hindering the
- 9 viability of markets designed to promote the
- 10 development of renewable energy, curb greenhouse gas
- 11 emissions, and otherwise mitigate the impact of climate
- 12 change.
- 13 Thank you again for permitting me to speak
- 14 about these important issues.
- 15 CHAIRPERSON WIGGINS: Thank you, Bill.
- 16 Jackie?
- MS. ROBERTS: Commissioners, Madam Chairman,
- 18 Madam Secretary, thank you for inviting me to be on
- 19 this panel. It is always an education to be here. And
- 20 I always enjoy it.
- 21 As Commissioner Stump said, someone always
- 22 has to go last. So I will try not to interfere with

- 1 your post-lunch lethargy, which we all have, before you
- 2 get your cup of coffee.
- First, let me just level-set a couple of
- 4 things from a retail customer's point of view.
- 5 Environmental markets are generally external to the
- 6 wholesale markets. We like that. Transparent, liquid,
- 7 central clearing markets for environmental attributes
- 8 are essential for competitive markets. We like that.
- 9 Derivative markets may be helpful if they contribute to
- 10 transparent price formation and liquidity. We think
- 11 that is positive. I believe that they should be
- 12 separate, however, from one of partial markets, like
- 13 the PJM GATS. Retail customers are always better with
- 14 competitive outcomes. And I must say the PJM energy
- 15 markets have served retail customers well in that they
- 16 save retail customers every year billions of dollars
- 17 from the old balkanized critically integrated system.
- 18 That does not mean it is a perfect situation, but it
- 19 has really helped financially the retail customers.
- 20 Ty said that it is a disruptive transition in
- 21 energy markets, and it really is. And I would point to
- 22 the primary cause of that, which is the shale play for

- 1 natural gas. That has completely changed the energy
- 2 markets. And I am going to talk about PJM because that
- 3 is the RTO that West Virginia is in. The cheap natural
- 4 gas has caused our baseload nuke- and coal-generating
- 5 stations to be displaced in the economic dispatch
- 6 order, which means we have closed easily 100 gigawatts
- 7 of coal plants in PJM.
- 8 When the Clean Power Plan came out and we
- 9 looked at the goals we would have to meet when it was
- 10 fully implemented, we had already met those goals
- 11 through coal plant closures. Some states, like
- 12 Illinois, that have five nuclear plants, many of which
- 13 are uneconomic now, are very concerned about what they
- 14 do about that. And we have had subsidies in the energy
- 15 markets forever, starting, as early as I could find, in
- 16 1916 through tax credits or outright subsidies or
- 17 grants.
- In 2016, I think the Congressional Budget
- 19 Office estimated that tax preferences for that one year
- 20 for the energy markets were \$18.4 billion. So we have
- 21 always had these. We have operated either vertically
- 22 integrated, like Southern Company, not in an RTO. And

- 1 I loved hearing your presentation because to me, it was
- 2 a much simpler time. I loved your presentation,
- 3 William, about how well the markets are working in
- 4 Lopa's description, but we are seeing, I am seeing, a
- 5 change that I think is going to have a pronounced and
- 6 profound impact on the derivative markets and on
- 7 environmental forward progress, at least in the PJM
- 8 region.
- 9 Now, the state subsidies, which are at issue
- 10 in the PJM region, are the capacity market subsidies.
- 11 PJM has many energy markets. They have the energy
- 12 market, which is the electrons. And they have the
- 13 capacity market, which is a forward market, three-year
- 14 forward market, based on the ability to produce the
- 15 electrons. And PJM has decided that if you are a
- 16 generating station that receives a subsidy from the
- 17 state, you will be banned from the capacity market.
- 18 So if you look at states, like Illinois, that
- 19 pass ZEC, zero emission credits, for some of their
- 20 nuclear plants, or New York or Ohio for coal plants.
- 21 And even West Virginia recently just subsidized the
- 22 Pleasants Plant, which is located in West Virginia.

- 1 You will have to adjust your bid price into the
- 2 capacity market, which will ensure that you don't clear
- 3 the market.
- 4 So the state policy, which by law, the states
- 5 have the right to establish -- as Sue said, they have
- 6 the right to establish the generation mix, and they
- 7 have the right to establish the renewable portfolio
- 8 standards or any kind of mix they want. We now see
- 9 running head on into the PJM capacity market, where it
- 10 says, "No, you can't play. You can't play in our
- 11 market if you get the subsidy."
- 12 So how this plays out is the units that are
- 13 being subsidized in terms of coal and nuclear are
- 14 borderline or marginally economic, if economic at all.
- 15 They will be certainly wiped out of the capacity
- 16 market. And they will fail even quicker than they
- 17 would have otherwise.
- 18 And the other area that PJM and FERC has
- 19 targeted is the renewable portfolio standards. They
- 20 think those should be out of the capacity market, too.
- 21 So for people, like William and the Morgan Stanley
- 22 Capital Group, which invests in renewable projects, if

- 1 they are looking in the PJM region, they are factoring
- 2 in that capacity payments will be received for these
- 3 generating resources. And that is not -- if FERC and
- 4 PJM has its way, that is not going to happen anymore.
- 5 So what we are having is a Federal regional action that
- 6 is in my opinion going to completely undermine the
- 7 states' rights for generation mix and renewable
- 8 portfolio standards.
- 9 So that is not final decision at FERC. They
- 10 issued an initial order saying that zero emissions
- 11 credits for nukes and renewable portfolio standards --
- 12 also, parenthetically, new credits, subsidies would
- 13 also include the coal subsidies -- are the ones that
- 14 will be affected. That has been ordered to a paper
- 15 hearing. And, of course, that will be appealed. I
- 16 don't know when it could possibly be final because it
- 17 will be hotly litigated.
- 18 So that is how the intersection of the
- 19 environmental and the energy markets manifests.
- 20 Because of the MOU between this organization and the
- 21 CFTC, FERC has jurisdiction over the electric markets.
- 22 And so they are moving forward with that agenda that I

- 1 described.
- 2 As a sidebar in following up on a comment
- 3 that Ty made about the difficulty of participating in
- 4 the RTO process, I can't underscore how difficult it
- 5 is. And there are several people here that are
- 6 integrally involved in that process representing the 62
- 7 million retail customers in PJM. And the process is
- 8 labor-intensive. It is complicated. And deference is
- 9 given to the filings PJM makes by FERC because they say
- 10 you have a stakeholder process. So whatever you end up
- 11 filing obviously was vetted with all of the
- 12 stakeholders.
- Well, theoretically, that is a valid point,
- 14 but you have got to remember that the RTO is a
- 15 voluntary organization. The transmission owners
- 16 voluntarily join it. The generators voluntarily join
- 17 it. And so that influences the process.
- 18 For example, I was at the U.S. Senate Energy
- 19 Committee a few weeks ago, and I was asked, not by the
- 20 committee but by the staff, I was asked, "Why is it
- 21 that the PJM capacity market clears at 30 percent
- 22 reserve margin when the reserve margin is only 15.2

- 1 percent?"
- 2 And I said, "Well, that is easy. They are
- 3 trying to keep the prices up because if they can't,
- 4 then the generators will leave."
- 5 And I was also asked, "Why are there so many
- 6 transmission projects that PJM will not review when
- 7 they have the authority to do transmission planning?"
- 8 And to give you the order of magnitude of
- 9 this problem, if you look at AEP or First Energy, their
- 10 earnings calls, they are always saying, "We are driving
- 11 our earnings through transmission, through the high
- 12 instant rates of return at FERC. And, parenthetically,
- 13 because if it is not a reliability project, which is a
- 14 project that PJM determines is required to keep the
- 15 system reliable, no one is looking at it." And so
- 16 these companies are investing billions, with a b, of
- 17 dollars every year in these projects with their stated
- 18 purpose to drive earnings.
- 19 Now, clearly some of those projects are
- 20 needed. The problem is we don't know, nobody knows
- 21 what projects are needed and what aren't needed. So
- 22 you have this dislocation in transmission and the

- 1 energy markets that is driven largely by the voluntary
- 2 nature of the organization. And for those of you who
- 3 think I might be a little paranoid about this, that has
- 4 been stated to stakeholders by the organization. It is
- 5 a voluntary organization. If we make them mad, they
- 6 will leave.
- 7 So when you have agreed through an MOU to
- 8 delegate your authority to FERC over these energy
- 9 markets, that is fine, but when you come up against the
- 10 states, legal goals and policies are going to be
- 11 undermined solely because someone at PJM decided
- 12 certain subsidies were bad, not all subsidies, not wind
- 13 and solar and other things. Just certain subsidies
- 14 were bad. It is going to have a devastating effect on
- 15 the goals of the states.
- 16 So I hate to be a Debbie Downer to end this
- 17 wonderful session, but I will say that these are
- 18 barriers to the effective operation of the markets and
- 19 of state goals. And, nota bene, if you think this is
- 20 of a concern, wait until storage, utility-scale
- 21 storage, becomes available and when the natural gas
- 22 infrastructure is built out so that that cheap gas can

- 1 go anywhere. Right now, it can't go anywhere. We in
- 2 West Virginia have a big part of the shale gas play.
- 3 And, yet, the lower half of our state is supplied by
- 4 gas to the Gulf. So when those two things happen, it
- 5 is going to completely change the markets again.
- 6 And if you have any questions, I would be
- 7 happy to answer them. Thank you.
- 8 CHAIRPERSON WIGGINS: Thank you all very
- 9 much. We are going to open the floor for questions and
- 10 discussion. So we are going to begin with questions
- 11 and comments from the Associate Members of EEMAC to the
- 12 members. And, Jim, I think I saw your card go up
- 13 first.
- MR. ALLISON: Thank you.
- I wanted to come back to this question of the
- 16 multiplicity of regulatory frameworks. Multiplicity is
- 17 in one sense an opportunity because it gives us a large
- 18 number of experiments going on simultaneously. So, in
- 19 theory, we can figure out what works, what doesn't
- 20 work. Whether that theory plays out is a different
- 21 question.
- But there is also a cost. And Paul's example

- 1 of the radical differences in the price of a REC, what
- 2 was it, 60 cents versus \$400? So there are costs to
- 3 the multiplicity.
- And, by the way, that \$400 is one measure of
- 5 the cost of violating Sue's mantra of what, not how.
- 6 If you told them what to do but not how to do it, it
- 7 would have been a 60-cent REC, not a \$400 REC.
- 8 The question is, what policy steps going
- 9 forward would facilitate convergence to reasonable
- 10 appropriate regulation without eliminating the
- 11 incentive for innovation?
- 12 [Pause.]
- 13 CHAIRPERSON WIGGINS: Is anybody on the panel
- 14 going to tackle that or should we move along here?
- 15 [Laughter.]
- 16 MR. PICARDI: No. I wasn't sure it was to
- 17 the panel, but for the working group members, I think
- 18 what I tried to present was there are these products
- 19 that are created as a result of regulatory constructs.
- 20 We were trying to use them to help our customers and to
- 21 manage our own activities. And there is no question
- 22 that what was demonstrated in the difference of price

- 1 in RECs -- I think solar RECs tend to be more expensive
- 2 -- is out there. And so I guess the question is,
- 3 again, which came up earlier, how can we manage all of
- 4 this and get to a point where there was one product?
- 5 And I just don't see that happening. I think we are in
- 6 an environment where there is experimentation and our
- 7 companies are trying to work their way through it and
- 8 use the products the best way they can.
- 9 I think that for now it would be great to
- 10 have a national product. We would love to have a cap-
- 11 and-trade market that is national and a product and
- 12 associated products, over-the-counter derivatives that
- 13 we could use to manage our exposures, but that is not
- 14 there right now. So the fact that we get opportunities
- 15 in some places to do it, try and see it as a positive
- 16 as we go through this process.
- I don't know if that answers your question,
- 18 Jim, or --
- 19 MR. HUGHES: I think I would just simply say
- 20 I think that the markets are evolving or they are
- 21 coming into being as a result of the demand. I mean,
- 22 the fact that we have a voluntary market, that it is

- 1 active, I mean, there are lots of places around the
- 2 country that there is somebody wanting that to occur,
- 3 whether it is just at the policy level or to the
- 4 customer level or wherever it may be, but there are
- 5 different pockets around the country that are driving
- 6 the demand for these type of markets.
- 7 I just think we are so early in the process
- 8 we don't know where it is going to go yet. I mean, I
- 9 get that the environmental markets have been around for
- 10 a while, but the transition in the industry has just
- 11 really gotten steam. It has gotten steam, and it is
- 12 happening quickly. We heard lots of statistics about
- 13 it. But as that continues to grow, then we will see
- 14 some changes. It is hard to pinpoint where it is going
- 15 to go, but I just think that shows that there is a
- 16 desire for some type of market or markets for certain
- 17 areas. It is the regional differences piece.
- 18 CHAIRPERSON WIGGINS: Erik?
- MR. HEINLE: Thank you.
- I want to go to an issue that, Lopa, you
- 21 mentioned in your discussion briefly. And that is
- 22 distributed energy. I represent a jurisdiction that

- 1 has that distributed energy. And especially rooftop
- 2 solar is an important part of our RPS goal. And I
- 3 would be interested in your thoughts.
- 4 And also, William, especially yours, how do
- 5 you hedge or what role can the derivatives market play
- 6 in distributed energy and taking that into account?
- 7 MS. PARIKH: So I just mentioned it in the
- 8 context of smaller players are entering the market.
- 9 Aggregators, as Paul mentioned and I mentioned, can
- 10 take the environmental attributes from distributed
- 11 resources and aggregate them into a REC that can be
- 12 used to meet goals. And then it is tracked. How the
- 13 hell it is tracked, I don't know, but it is tracked by
- 14 PJM or other markets. And so it is a role for all
- 15 renewable resources that can play as we try to meet
- 16 these goals going forward.
- MR. McCOY: I will just add as far as the
- 18 derivatives markets, as we see more and more the
- 19 liquidity coming greater open -- we have heard about
- 20 the open interest in the exchange-traded derivatives
- 21 markets, but it is still nascent. I agree with exactly
- 22 what Paul was just saying. In all of these markets,

- 1 they are still new. So as it grows, we are finding
- 2 greater demand. And I think that would go for the
- 3 distributed as well. And as we are seeing different,
- 4 not only just the traditional commercial users, but we
- 5 are just seeing different interests coming in, that
- 6 should just help with further efficiencies and
- 7 transparency in pricing.
- 8 CHAIRPERSON WIGGINS: Are there any other
- 9 comments from the Associate Members? If not, Tyson, as
- 10 a Member, I will turn this over to you.
- MR. SLOCUM: Thank you.
- 12 This is for Matt. And it is going to sound
- 13 confrontational, but I am just trying to clarify the
- 14 public record for the purposes of this meeting. Is it
- 15 still your position that you won't disclose the names
- 16 of the members of the Commercial Energy Working Group?
- MR. PICARDI: Yes.
- MR. SLOCUM: And, just to clarify for the
- 19 public record, Public Citizen believes that trade
- 20 associations should be required to disclose their
- 21 members as if they are going to participate in a
- 22 Federal advisory committee. Thank you very much.

- 1 CHAIRPERSON WIGGINS: Commissioner?
- 2 COMMISSIONER BERKOVITZ: Thank you. I will
- 3 hopefully keep it short. I know that folks have got
- 4 travel arrangements they have to get to.
- 5 I was interested in following up on the
- 6 discussion of this morning. And maybe, Bill, you would
- 7 be in a place where you might be able to help us. The
- 8 question of liquidity in these markets, many of the
- 9 folks here are the commercial end-users and the
- 10 generators and the consumers of these environmental
- 11 products.
- 12 But we mentioned also there have to be in
- 13 many of these markets liquidity providers. I won't
- 14 call them speculators. I will call them liquidity
- 15 providers to make up some of the difference between
- 16 buyers and sellers.
- 17 A firm like yours, you mentioned about
- 18 providing financing. And those financing solutions I
- 19 think bank swap dealers will typically provide hedging
- 20 instruments, in addition to the financing or maybe it
- 21 is even as a condition of.
- 22 From your perspective, what do you see as

- 1 challenges or willingness for entities to provide
- 2 liquidity into these markets, as Dr. Sandor was talking
- 3 about, to maybe balance these markets or is that a
- 4 challenge in today's environment generating sufficient
- 5 additional liquidity in terms of these early markets
- 6 and given the general state of the economy and
- 7 financial institutions.
- 8 MR. McCOY: Thank you. I think one has to
- 9 distinguish between in providing the hedging products
- 10 that are based on the energy products for the
- 11 development versus the environmental products. And it
- 12 is the latter where I think there are a great deal of
- 13 challenges to the relative lack of depth in terms of
- 14 pricing, but it is growing.
- 15 And then I struggled as I went into this
- 16 thinking about the traditional in terms of hedges
- 17 versus speculators because, as we talked about, a lot
- 18 of the growing interests are due to the voluntary
- 19 programs of many firms. Paul, you mentioned some of
- 20 the corporates out there that are not producers of
- 21 energy or very limited emissions that they may have,
- 22 just our own firms, et cetera. Firms have their

- 1 voluntary contributions. And they come to the market.
- 2 That is just going to provide for more buyers and
- 3 sellers as renewables continue to rise as more wind
- 4 farms being grown and developed and solar
- 5 installations, including at the very small part of
- 6 aggregation of various producers.
- 7 So I think the challenge is because we are in
- 8 an early part of the development of these markets, so
- 9 coming up with the comfort level in terms of the
- 10 pricing and the models and such is going to continue to
- 11 be a piece that liquidity providers have to work with,
- 12 but I just think as more and more interests come into
- 13 the markets and as we have policies to support that and
- 14 not hinder that, it will be there. It will grow.
- 15 CHAIRPERSON WIGGINS: Thank you.
- 16 We have certainly heard a lot of information
- 17 today on the current state of the energy markets and
- 18 the environmental derivatives markets and issues
- 19 affecting market participants trading in the exchange-
- 20 traded and over-the-counter markets. I want to thank
- 21 all of the Members, all of the Associate Members, all
- 22 of the guest panelists for your participation here

- 1 today and for your thoughtful presentations and
- 2 thoughtful participation. We look forward to the
- 3 ongoing work of the EEMAC and our next meeting, on a
- 4 date to bet determined, sometime in the spring.
- 5 Abigail?
- 6 MS. KNAUFF: Thank you, Dena.
- 7 I now recognize Commissioner Behnam to give
- 8 his closing remarks.
- 9 COMMISSIONER BEHNAM: Thanks, Abigail.
- 10 Thanks for all of your work. Dena, thank you for your
- 11 chair[ing] and leading this discussion and,
- 12 Commissioner Berkovitz, great discussion. To all of
- 13 you, thank you for your service, your willingness to
- 14 come to Washington and provide fantastic advice.
- 15 Really great conversation across the board this morning
- 16 and this afternoon.
- 17 To make one quick comment, very encouraged by
- 18 a lot of the information that was shared by Lopa, by
- 19 Paul, just generally speaking to how the private market
- 20 is moving towards more sustainable methods of
- 21 production. And it is a matter of consumer demand. It
- 22 is a matter of technology. It is a matter of

- 1 sustainability.
- But, that all said, I do believe there is a
- 3 role for public policy to be integrated into this
- 4 conversation. Regardless of what one might think about
- 5 climate change, it is potentially existential. And we
- 6 have to be thinking about this as a large coalition,
- 7 the biggest coalition possible. Right? There is too
- 8 much at stake. And, despite the targets that you all
- 9 laid out, which are very impressive in terms of the way
- 10 you are shifting your business and including, Vincent,
- 11 what you mentioned about BP and how the sort of ratios
- of different energy sources are moving around,
- 13 cognizant of that market, the natural forces in the
- 14 market and competition pushing us in that right
- 15 direction but also mindful that public policy and the
- 16 regulators should play a role and should participate,
- 17 creating standardization, creating uniformity, creating
- 18 hard mandatory deadlines, and sort of requirements.
- 19 But, all that said, we have to recognize the
- 20 transition risks and what needs to get done to meet
- 21 those sustainability goals and those challenges from
- 22 climate change and carbon concerns but also

- 1 understanding that we still need to serve end-user
- 2 demands and needs that we have all become accustomed to
- 3 as a convenience and as something that we view as
- 4 something that we expect on a day-to-day basis.
- 5 So look forward to sort of seeing what
- 6 happens from the market in these years to come but
- 7 certainly speaking for myself, I would love to be a
- 8 part of the conversation -- I hope I can be -- in terms
- 9 of the way we can all work together to make the
- 10 transition smooth but also productive.
- 11 So thank you.
- MS. KNAUFF: Thank you, Commissioner Behnam.
- 13 I now recognize Commissioner Stump to give her closing
- 14 remarks.
- 15 COMMISSIONER STUMP: Thank you, Abigail. I
- 16 will be very brief.
- I always find these conversations to be
- 18 interesting. I learn something each time we have an
- 19 advisory committee meeting, but I often leave the
- 20 meetings somewhat overwhelmed with what we are left to
- 21 consider.
- Today, I am actually quite encouraged that

- 1 the way the CFTC has approached innovation and new
- 2 products and regulation is, in fact, the way to go. I
- 3 actually might get buttons made up that say, "Tell us
- 4 what, not how." So thank you, Sue. I do think that
- 5 that is a principle that the CFTC has applied for
- 6 years, but we haven't in quite some time had a new
- 7 product. We have recently had new products, but it has
- 8 been a number of years since we have been faced with
- 9 the how do we ensure that the risk management, the
- 10 derivatives are, in fact, providing the risk management
- 11 options that market participants need in a new space.
- 12 And I am encouraged that there is, in fact, market
- 13 demand for these types of things. And because of that,
- 14 we will have a demand for a derivatives market. And
- 15 when that happens -- and it is happening -- we will
- 16 need to determine, are the derivatives markets fit for
- 17 that particular need? Are they helping inform price
- 18 discovery? Are they helping mitigate risk?
- 19 And so I think that is all very interesting.
- 20 I think that we will eventually get to a place where we
- 21 are having more conversations about what the
- 22 derivatives market structure should look like in this

- 1 space. I am also quite confident that the structure we
- 2 have established for other asset classes will translate
- 3 in this space once it is more developed.
- 4 So thank you all so much.
- 5 MS. KNAUFF: Thank you, Commissioner Stump.
- I now recognize Commissioner Berkovitz to
- 7 give his closing remarks.
- 8 COMMISSIONER BERKOVITZ: Thank you, Abigail.
- 9 And thank you to all of the participants. Thank you,
- 10 Dena. I thank my fellow Commissioners, who are here
- 11 all day. And I think that is quite a testament. Their
- 12 actions speak perhaps louder than their or just as loud
- 13 as their words. They were here all day for this
- 14 meeting. And I think that shows the level of interest
- 15 and the quality of the discussion that we have had
- 16 today.
- 17 It is actually quite humbling as I am
- 18 thinking about some of the topics that we have
- 19 discussed in the intersection, talking about global
- 20 financial, risks.
- 21 This small agency, as Dr. Sandor was talking
- 22 about, in 1974. What he mentioned, this agency was

- 1 given exclusive jurisdiction over futures and
- 2 subsequently over swaps. The importance of the work
- 3 that we do and the advisory committees, who assist us
- 4 in that with respect to what are essentially global
- 5 problems and when we are talking about global
- 6 environment issues. We deal with global systemic risk,
- 7 so the global advisory committee and the markets risk
- 8 advisory committee. And trying to get this right,
- 9 obviously the private and public sectors' advice to us
- 10 and recommendations are absolutely critical for us to
- 11 be able to do our function properly and help with the
- 12 solutions and not get in the way of progress either. I
- 13 mean, that is critically important. We have seen how
- 14 regulation can both make the market stronger. And we
- 15 have seen how if it is not done right, it makes the
- 16 markets weaker. So we have to get it right, and I
- 17 thank you all.
- I know for many of you traveling here, it is
- 19 on your dime, not on ours, for many of you. So I
- 20 appreciate the time and effort that you put into this
- 21 and the support that you give this committee. And,
- 22 again, I want to thank everybody here at the CFTC who

- 1 helped put it together.
- 2 And I didn't mention it specifically in my
- 3 earlier thanks, but there was a lot of work to getting
- 4 the six new members in on time and a very short notice.
- 5 And that was helped through Lucy and Abigail, and the
- 6 Office of General Counsel, and the Office of the
- 7 Commission and the Commissioners who helped get that
- 8 paperwork here very quickly. And if you have dealt
- 9 with getting paperwork through the government, those of
- 10 you who have had to go through it I hope can appreciate
- 11 that it was very timely.
- 12 Anyway, thank you all again. I look forward
- 13 to future meetings of the committee. Thank you. And
- 14 thank you, Dena, again.
- MS. KNAUFF: Thank you, Commissioner
- 16 Berkovitz. And thank you to our guest panelists, the
- 17 EEMAC Members, and the Associate Members of the EEMAC
- 18 for participating in today's EEMAC meeting. The
- 19 meeting is now adjourned.
- 20 (Whereupon, at 3:15 p.m., the meeting was
- 21 adjourned.)

22