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ABSTRACT 

We estimate a proportional hazard model to study the latency between market exits and 
new orders. Although there is significant heterogeneity across participants, the delay to re-
enter the market is a function of state covariates, such as manual- and algorithmic-entry 
characteristics, state conditions at an exit, such as inventory levels or whether the exit was 
by a market order, and importantly time-varying covariates, such as the volume of 
executions or cancellations during the latency gap. The results for the E-mini futures 
contract support the view that market participants place significant weight on publicly 
available signals to determine latency decisions. 
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New Order Latency in the E-Mini Futures Market 

1. Introduction 

Market liquidity is the focus of much research in high frequency environments, particularly 

whether faster traders improve trading conditions and lower costs. 1 Most researchers find 

positive effects when faster traders participate in financial markets, such as narrower spreads and 

increased liquidity for smaller orders, although adverse selection costs may work against such 

results (Menkveld, Hendershott, and Jones, 2011; Foucault, Kozhan, and Tham, 2017; Menkveld 

and Zoican, 2017). A related question is how quickly participants act to provide additional 

liquidity; that is, how quickly depth on the order book recovers after an execution or cancellation 

removes some existing liquidity. Do faster traders speed up liquidity replenishment as well as 

overall trading speed? The evaporation of liquidity during the Flash crash in May 2010 and 

subsequent mini-crashes make this an important question to answer to understand the effects of 

fast trading environments.2 

Fishe, Haynes, and Onur (2015) show that high frequency traders (HFTs) or algorithms are 

not equally fast, with speed varying significantly as measured by new order origination after an 

execution. Algorithmic traders are faster than manual-entry but within both groups there is high 

variation. Thus, individual traders decide how long to wait before they re-engage with the 

market, and may adjust such latency based on both market and individual metrics. Because 

traders may decide to speed up or delay order messages, latency is a decision variable and 

1 Menkveld (2016) and Fishe and Smith (2018) offer surveys of high frequency and algorithmic trading effects on 
financial and commodity markets, respectively.
2 The causes of the Flash Crash of 2010 are examined by Aldrich, Grundfest, and Laughlin (2016), Kirilenko, et al. 
(2017), and Menkveld and Yueshen (2017). See also U.S. Commodity Futures Trading Commission (2018) for 
documentation of sharp price movements in futures markets. 
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liquidity a function of that decision for both algorithmic- and manual-entry traders. The goal of 

this paper is to identify the factors that affect new order latency decisions. We focus on factors 

that affect both new limit orders that add liquidity and new market orders that remove liquidity. 

We also examine how inventory levels affect these responses, and identify broader market 

characteristics that slow down or speed up a trader’s response. These broader market 

characteristics are found to be the most important to explaining the timing of new liquidity 

decisions. 

Earlier research on financial market latency examined execution speeds, that is, the time 

between trades (Engle and Russell, 1998; Engle, 2000). Angel, Harris, and Spatt (2015) find that 

execution latencies for securities decreased during 2001-2014, coincident with the growth of 

algorithmic trading. This finding suggests that the speed of liquidity provision has similarly 

increased to accommodate faster trade prints. 

Additional latency research evaluated the timing of events after an order submission, such 

as the time-to-cancel, time-to-modify, or time-to-execution. An SEC (2013) study of quote 

lifetime distributions for corporate securities shows that 27% of quotes are executed within 500 

milliseconds and 1.4% of quotes are executed within 100 microseconds, supporting the view of 

rapid liquidity removal. The SEC also reports that 39% (4.2%) of all quotes are canceled within 

500 milliseconds (100 microseconds) thereby removing liquidity at a rapid rate. As such, order 

book replenishment rates must be even higher to support such removal rates. 

The methods used in this study are similar to Hasbrouck and Saar (2013), who examine 

market latency rates conditional on quote change events, as these are events likely to trigger 
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quick responses. 3 They estimate hazard rates after the submission of new, quote-improving 

orders. They find declining hazard rates for same-side submissions and for new executions at the 

improved quote. In each case, however, the hazard rate jumps initially suggesting that some set 

of participants respond within 2-3 milliseconds of a quote change, confirming that speedy traders 

offer and take liquidity with low latencies. Importantly, the subsequent declining hazard profiles 

suggest a mixture of latencies exist in the overall market. Our research provides estimates of how 

both trader and market characteristics affect these hazard rate profiles. 

The approach here measures how long it takes participants’ to respond after they exit the 

market—called the “latency gap”. The exit could be due to an execution or an individual 

decision to cancel an order. Both of these actions remove liquidity from the order book. 

Importantly, both actions admit the possibility that the trader (or algorithm) may re-start their 

participation logic at this point. Thus, under certain circumstances we may be identifying the 

signals or factors that initiate participation in a market—that is, the trading logic. For example, if 

an execution brings a trader’s inventory to zero, that trader is effectively out of the market, so we 

separately examine how quickly such traders return to the market and what factors affect the 

latency of this ‘initiation’ decision. 

Using six days of order book data from the E-mini futures complex, we analyze 19,465 

accounts, with approximately 14% operating as algorithmic-entry participants. Combined, these 

accounts executed 2,738,390 trades and cancelled 6,895,702 orders. Subsequent order 

submissions led to an analysis of 1,868,121 cases of new order latency after an execution-created 

exit, and 2,287,090 cases after a cancelation-created exit. Bootstrap methods are also used to 

3 Other studies that examine latency measures in financial markets include Riordan and Storkenmaier (2012), 
Kirilenko and Lamacie (2015), Menkveld and Zoican (2017), and Cartea, et al. (2018). 

3 



 
 

 
 

 

    

  

   

      

       

 

     

     

     

     

        

 

  

     

       

   

  

      

     

  

   

    

   

make inferences at the participant level, rather than the order message level. Because a small 

fraction of participants account for a large fraction of orders, the bootstrapping method equalizes 

the influence of all participants on our results. 

Covariate estimates in a proportional hazard rate model provide a list of the factors 

affecting new order latency after either an execution or a cancellation message. Most of the 

covariates studied here are binary variables indicating the participant displays a particular 

feature, such as uses an algorithm to trade. These covariate effects work through estimated 

hazard rates. Technically, the hazard specifies the instantaneous “new order” rate at time t given 

that there is no “new order” between the initial time and t. The higher the “new order” hazard 

rate for a covariate, the more likely we are to observe a new order entry in the next instant of 

time for participants with that covariate’s features relative to participants without those features. 

In this sense, higher hazard rates correspond to relatively faster actions to submit new order 

messages by participants with those covariate characteristics. 

Several results arise based on the proportional hazard rate estimates. The state-level 

covariates at the account level affect order entry latency for both manual- and algorithmic-entry 

participants. Specifically, proprietary algorithmic accounts reveal higher hazards than customer-

based accounts, accounts seeking to execute at the last execution price or last cancel price exhibit 

higher relative hazards particularly for market orders, market-order execution-exits decrease 

subsequent hazards, and executions that reach or cancellations that maintain a zero-inventory 

balance reduce these hazard rates. 

These findings show that selected factors help explain the latency actions of participants. 

Although these results are new, they make sense in a microstructure setting. Proprietary accounts 

act based on the logic of the owner, but customer accounts often represent various owners, who 
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may have very different goals, which we find makes them on average less likely or slower to 

provide or take liquidity. Participants who execute at the previous price must act quickly before 

the market moves to a new price, which also motivates participants who have cancelled at a 

given price. A market-order execution indicates a more immediate demand by a participant, 

which carries a higher transaction cost than limit orders on average, so these costs may slow 

subsequent actions. In effect, participants may be more circumspect about how quickly and at 

what price to re-enter the market. 

The inventory effects tend to discriminate between liquidity providers and liquidity takers. 

Our results show that participants with zero inventory positions are more likely to take liquidity 

from the market compared to those who have added to inventory with a previous execution. The 

latter are more likely to submit a limit order when they re-enter the market. In addition, our 

results indicate that participants are likely to move more quickly towards a zero-inventory 

position than they are to move away from that inventory level. 

A sub-sample that isolates those with zero-inventory positions helps to identify whether 

such cases meaningfully change how participants react to market signals. At zero inventory 

levels, a participant must decide to enter a buy or sell order without regard to inventory 

adjustment costs. This choice may cause a different reaction to the same type of signals when 

compared to participants with existing long or short positions. Our findings show that 

participants at a zero-inventory often exhibit greater hazard rates than our full sample results. For 

example, algorithmic proprietary participants are 1.6 times more likely to submit a market order 

to end a latency gap than manual customer participants, but in the zero-inventory sample they are 

2.2 times more likely. In general though the covariates used for signals in the full sample data 

provide similar explanatory power and the same directional predictions in the zero-inventory 
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sample. Even if the hazards of these covariates change, as a group they work well to explain 

participant decisions about new orders from both zero- and non-zero-inventory positions. 

We also find a significant jump in explanatory power occurs when time-varying 

covariates that measure market events are included in the estimated models. These time-varying 

covariates suggest that participants are making new order latency decisions based largely on real-

time information. After an execution, we find that an increase in either the volume executed or 

the volume of new orders in the latency gap increases the likelihood of subsequent new orders, 

while an increase in market-wide cancellations slows new submissions. The first two findings are 

consistent with participants recognizing greater execution opportunities and acting quickly 

before they dissipate or before the book queue greatly delays execution. The increase in market-

wide cancellations is a less obvious signal. More cancellations may mean shorter wait times on 

the book, which would encourage order entry, but it may also mean that order flows are more 

informed or toxic, so participants are less inclined to enter new liquidity because of adverse 

selection costs. These results show that the latter effect dominates after an execution exit. 

For cancellation exits the results are similar to execution exits, except that the market-wide 

execution covariate effect is reversed. Now, the greater are market-wide executions then the 

greater the delay in subsequent new orders. It would thus appear that the competing forces 

behind market-wide cancellations noted above are less competing when it is the participant who 

cancels. That is, if the participant cancels because of potential adverse selection costs, then 

subsequent market-wide executions may act to confirm those beliefs and thereby delay new 

order submission. 

Lastly, we examine how hazard rates change when inferences are made at the participant 

level instead of the message or latency gap level. Specifically, these account-level data include 
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multiple orders for the same participant. Those who are algorithmic, high frequency traders have 

many more orders than those who use manual-entry methods.  Thus, when the proportional 

hazard regressions use the full sample, inferences are at the message level, which gives relatively 

greater weight to observations from a small set of active participants. To overcome this bias, we 

bootstrap these data to create 500 samples in which the new order latency is sampled once for 

each participant. We find that this approach generally alters the magnitude of the estimated 

hazard rates while retaining the previously noted directional effects. 

The remainder of this paper proceeds as follows. Section 2 discusses the conceptual 

approach that underlies our methods. This approach relies on information signals to give 

participants incentives to bring new orders to the market. Section 3 discusses the order book data 

and provides summary statistics for our sample. Section 4 develops the empirical model and 

explains our results, and section 5 offers our conclusions. 

2. Hazard Model: Signals and Order Latency 

This analysis focuses on new order entry messages, which precede all other messages for an 

order. One may expect that both humans and algorithms rely on information signals to incite new 

order actions. For example, Hasbrouck and Saar (2013) posit that market participants will react 

after a new quote improves the best bid or offer in the market. They find that this common event 

results in a cascade of actions by participants, including entering new orders, cancelling existing 

orders, and trying to execute against the improved quote. We hypothesize that there are other 

such signals that cause participants to act. These signals may be grouped as external (e.g., 

earnings or news announcements), market related (e.g., a price or liquidity change), and/or 

specific to a participant (e.g., execution of or cancelling an outstanding order). This research 
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focuses on market and participant signals because the set of external signals is too big to 

reasonably identify those effects and too difficult to assign timestamps for use with millisecond 

trade data.4 

The delay in responding to signals makes it difficult to identify which signals matter to 

traders. The latency gap that results admits the possibility that many signals in the gap may be 

superfluous to a trader’s order decision.  In effect, a detailed flowchart of either the algorithm 

used for trading or specific instructions offered by human traders is required for exactitude. 

Thus, our analyses only ‘approximates’ the factors that affect new order latency because we do 

not know what combination of signals generate trader responses. We rely on signals that can be 

measured for each participant and those that arise during the new order latency gap. 

In our context, a signal begins the new order latency gap and then the actual new order 

message ends the gap. Thus, there may be some ambiguity as to what signal defines the 

beginning of this time interval. We posit that new order latency may be analyzed by measuring 

how long a trader takes to act after receiving an ‘exit’ signal from an existing order. Specifically, 

both execution and cancellation confirmations represent exit signals in which a trader’s order is 

removed from the matching engine. Our premise then is that these exit signals represent an 

approximate starting point for the trader’s (or algorithm’s) strategy. In the specific case when an 

exit signal leaves a trader with a zero inventory position, we argue that this is a natural point to 

re-start their trading strategy.5 After an exit signal, the strategy then processes other signals until 

sufficient information is received that causes a new order message. From this view, the factors 

4 See Riordan, Storkenmaier, Wagener and Zhang (2013) for an approach to external news effects based on 
classifying newswire feeds into positive and negative sentiment. 
5 Another case that may admit a natural re-start of a strategy is when a participant cancels a limit order and then 
seeks to enter the order again with the same terms (e.g., price and quantity). However, because of anti-spoofing 
laws, such actions may lead to regulatory actions if repeated without intent to execute. 
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relevant to liquidity decisions are those observed at the time of the exit signal and those arising 

during the new order latency gap. 

Insert Figure 1 

Figure 1 illustrates new order latency based on the assumption that an execution signal 

starts the process that leads to a new order message. Two traders are shown, labeled “A” and 

“B”. Execution signals provided are marked by vertical dashed lines.  These are public signals, 

except that the two traders know when their trades are confirmed. This confirmation indicates an 

exit from the market for their book or market orders. The new order latency times (t) of each 

trader are marked depending on when they re-enter the market with a new order. The shaded 

boxes capture the activity in the market during these latency gaps. We illustrate only the 

execution activity for simplicity and make no distinction between whether a limit or market order 

ends the gap. The empirical analyses accounts for differences in types of market-wide messages 

(i.e., order entry, cancellation, and execution) during the gap and whether limit or market orders 

arise after an exit. 

Figure 1 shows that Trader B appears to act after receiving the next (public) trade execution 

signal from the market, which suggests a low threshold or simple rule for generating a new order 

for this trader. Alternatively, Trader B may be reacting quickly after the confirmation of a 

previous order, making this trader’s actions dependent on what we call ‘participant’ signals, such 

as whether the trader uses algorithmic- or manual-entry methods. Trader A appears less 

responsive to market execution signals, initiating new orders only after five and eight execution 

signals, respectively. In effect, Trader A’s new order decision may require greater confidence in 

market liquidity as shown by additional executions, or may be a function of other signals, which 

are not shown in this illustration. 
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Note that cancellation messages also create exit signals and represent a significant 

proportion of message traffic. Traders may use cancellations for many purposes, such as to 

remove stale limit orders, search for hidden liquidity when tied to more aggressive quoting, 

avoid interacting with informed traders, or to avoid being adversely selected in highly volatile 

markets. Unlike execution signals that confirm limit order matches, cancellations do not involve 

the actions of other traders. In effect, this exit message and the new order message are both 

created by a given trader’s (or algorithm’s) actions. Thus, new order latency derived from 

cancellations may show different effects at the trader level than the same latency using execution 

messages. 

Figure 1 also suggests a modeling strategy for new order latency. Because we seek to 

explain how long it takes for a trader to submit a new order after an existing order has exited the 

market, the problem is analogous to those examined using survival analysis. 6 Cox (1992) 

developed a proportional risk model for survival analysis that has been shown to be flexible for 

many different latency applications. The Cox model assumes that covariates have a 

multiplicative effect on the hazard function.7 This approach requires a specification of the hazard 

function (or rate). Specifically, if 𝑡𝑡𝑖𝑖,𝑔𝑔 represents the time between order exit and order entry, 

where g = 1,…,Gi indexes the number of observable exit-to-reentry gaps for trader i, then a Cox-

type hazard model with covariates may be specified as: 

′𝜆𝜆�𝑡𝑡; 𝑥𝑥𝑖𝑖,𝑔𝑔� = 𝜆𝜆0(𝑡𝑡)𝑒𝑒𝑥𝑥𝑒𝑒�𝒙𝒙𝑖𝑖,𝑔𝑔𝜷𝜷�, (1) 

6 See Kalbfleisch and Prentice (2002) for a discussion of survival time models and examples. 
7 The hazard function specifies the instantaneous failure rate at time t given that there is no failure between the 
initial time and t. This function equals the density of failure time divided by the probability of survival beyond time 
t, the latter is known as the survivor function. 
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where 𝜆𝜆�𝑡𝑡; 𝑥𝑥𝑖𝑖,𝑔𝑔� is the hazard function for the latency time between order exit and order entry, 

′ which depends on an arbitrary baseline hazard ( 𝜆𝜆0 ), and covariates ( 𝒙𝒙𝑖𝑖,𝑔𝑔𝜷𝜷 ) that have a 

multiplicative effect via the exponential specification. The covariates examined here are 

variables that define the trader, such as manual or algorithmic, and variables that define 

information (or signals) arising during the gap between exit and reentry with a new order.  Some 

covariates are time dependent, so we adjust our estimation methods to allow for such 

dependence. 

The coefficient vector, 𝜷𝜷 , in the Cox model is estimated using partial information 

maximum likelihood methods. Because of proportionality, the baseline hazard is not involved 

with these estimates.  We use the PHREG routine in SAS to estimate these coefficients. 

The covariates we examine are state dependent, determined at the latency gap level, or 

those that would be known to the market or may be closely approximated during a latency gap 

between an exit signal and re-entry of a new order. Specifically, traders would know the volume 

of trading, and from updates to the book, they may determine flows on and off of the book. We 

measure these factors using the quantities adjusted by such messages. We consider such 

covariates as information signals received by market participants. Time dependencies arise 

because the longer the gap, the greater the number of messages, on average, within the gap. 

3. Data 

The data studied here are for the E-mini futures contract, which is typically the most actively 

traded U.S. futures contract based on daily volumes. We analyze order book data for participant 

accounts on six trading days, August 1-8, 2014. On these days there are a total of 1,868,121 

execution messages and 2,287,090 cancellation messages that preceded a new order entry 
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message as defined by our selection criteria (discussed below). These were generated by 19,465 

accounts with varying levels of activity both within and between days. 

As with any sample, several news events affected participants in equity and futures markets 

on these days. On Friday, August 1, there was a morning release by the Bureau of Labor 

Statistics of July employment data. Those data showed the U.S. added 209,000 non-farm payroll 

jobs and the unemployment rate increased to 6.2%.8 Expectations were for 230,000 jobs and the 

unemployment rate unchanged at 6.1%. This release may have added some volatility to trading 

during this day as investors interpreted these data as reducing pressure on the Federal Reserve to 

raise interest rates. Overall, the week ended with poor equity performance as the S&P500 index 

decreased by 3%. 

On Tuesday, August 5, the market received news that there was a significant buildup of 

Russian troops along the Ukraine border. 9 Around Noon (Eastern Time), Poland’s Foreign 

Minister stated that Russia is poised to pressure or invade Ukraine, which negatively affected 

equity indices. After a see-saw week based largely on interest rate concerns and foreign news, 

equities rebounded in the afternoon of August 8th on news that Russia had ended its latest 

military exercises on the Ukraine border. Overall, these events likely added volatility to our 

sample relative to a randomly drawn six days during 2014, but volatility is often associated with 

higher volumes, so our sample may offer a larger, more comprehensive panel of participants to 

analyze order entry latency. 

The sample data are collected as part of the regulatory oversight at the Commodity Futures 

Trading Commission. The sample includes only contracts traded for the September 2014 

8 See Myles Udland, “Jobs disappoint, unemployment rate rises to 6.2%,” Business Insider, August 1, 2014. 
9 See http://www.valueline.com/Markets/Daily_Updates/Stock_Market_Today for equity market news and reactions 
during the week ending August 8, 2014. 
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expiration month, which was the active month at this time for the E-mini contract. For each 

participant, we created a message entry sequence identifying every message submitted or 

received in time order. We then identified all cases in which an execution message was followed 

by a new order entry with or without intervening cancellations or modifications, but no other 

executions. Next we identified all cases in which a cancellation message was following by a new 

order entry, with or without intervening execution messages, but no other cancellations. These 

gaps are the base file from which we examined new order latency observations. 

Each of the identified latency gaps includes either the last execution or last cancellation 

prior to a new order. This approach reduces the sample size relative to the total number of 

executions or cancellations because many of these exits are contiguous for a participant in the 

message stream. The confirmation timestamp on this last message marks the beginning of signal-

processing for that participant. That is, this is the time of exit from the market and by assumption 

the beginning of a new strategy sequence that processes signals before re-entry. Re-entry to the 

market occurs when a new order is submitted, and we use the time stamp for CME receipt of the 

new order to mark the re-entry time.  The difference between the re-entry and exit times is the 

order entry latency or “latency gap”, the dependent variable in our analyses. 

The sampling process investigates latency gaps in 15-minute intervals beginning at 

7:00AM CT and ending at 3:00PM CT. For a given 15 minutes, we looked forward another 10 

minutes (25-minute window) to determine if the gap terminated with a new order entry. Gaps 

that terminated after the 25-minute window were excluded from the sample. Gaps that began in 

the 15-minute interval and terminated outside of the interval but before the end of the 25-minute 

window were included as censored observations in the proportional hazard regressions. This 

sample design eliminates the really long latency gaps that arise because some traders may wait 
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hours before returning to the market, particularly those traders handling customer orders. The 

abundance of activity in these long-gap cases appears as noise to their decisions. The small 

fraction of censoring reported in our full sample results suggests that this design was effective in 

sampling the vast majority of latency gaps. 

Table 1 provides summary statistics for these sample data and the latency gaps that we 

identified. This table reports both means and medians of sample covariates, which include the 

volume of cancellations, executions, and new order messages observed market-wide within a 

latency gap. These statistics are also computed for inventory at the beginning of a gap and the 

absolute value of beginning inventory. Additional statistics measure the percent of gaps that start 

with a zero inventory, use a market order to execute at the beginning of an execution-exit gap, 

and set the new order price equal to the price at execution or to the limit price on a cancellation 

message. These data include both participants who acted for their own accounts (proprietary 

traders) and participants who acted on behalf of customers. The fraction of proprietary traders is 

about 9% in the sample while the number of algorithmic traders is just over 14%. 

Panel A in Table 1 reports the summary statistics for latency gaps started by an execution-

created exit from the market. These data show an overall average latency gap of 40.5 seconds 

with algorithmic-entry cases averaging 16.9 seconds and manual-entry averaging 139.2 seconds 

before a new order message. The difference between algorithmic-entry and manual-entry is 

perhaps best seen with the median statistics. The medians show that one-half of the algorithmic-

entry gaps were less than 210 milliseconds, while the midpoint for manual-entry gaps was 31.3 

seconds. Not surprisingly, in the hazard rate analysis below, we find significant differences 

between algorithmic- and manual-entry covariates. These differences also appear in Panel B 

where we report statistics for the gaps in which a cancellation caused a market exit. The 
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divergence between means and medians in both panels suggest significant skewness. The 

bootstrap procedure described below helps to overcome this issue. 

The number of gaps analyzed is reported at the bottom of each panel. For algorithmic 

participants there are more cancel-to-new-order sequences for algorithmic-entry participants. 

Intuitively, this would imply that message origination latency for the cancel-to-new-order 

sequences is less than that of the execution-to-new-order sequence. The means and medians of 

the gap latency for algorithmic-entry participants confirm this observation, with the latency gap 

for cancellation exits being 68% smaller on average than the execution-exit gap latency. 

Interestingly, there are fewer cancellation-exit gaps than execution-exit gaps for manual-entry 

participants, but the latency is somewhat shorter after a cancellation-exit gap, suggesting that the 

decision to reenter for manual-entry traders is different than for algorithmic-entry traders. 

Table 1 also shows summary statistics for covariates used in the hazard rate analysis. These 

covariate data may be grouped into state variables over the sample, state variables for a gap, and 

time varying variables. State variables for the sample are whether the account is algorithmic- or 

manual-entry, and if proprietary or customer based. State variables over a gap include whether 

the last execution was a market order, whether the new order equals the last execution price or 

the last cancellation price, the quantity traded or cancelled at the last execution or cancellation, 

how current inventory is affected by the execution or cancellation, and whether the new order is 

a limit or market order. The order type for the new order is partitioned in the analyses so that we 

may compare the latencies of liquidity providers (limit orders) and liquidity takers (market 

orders). Time varying variables include quantities executed, cancelled, and submitted during the 

gap for all other accounts in the market. We also used counts of these variables, but the results 
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were substantially the same, so we focus on quantities.10 These quantity variables are data that 

participants could observe or compute from market data feeds provided by the CME Group. 

The participant count data in Table 1 show that there are 2,752 algorithmic-entry and 

17,138 manual-entry participants over these six days of data. Of these 37.5% (5.2%) of 

algorithms (manuals) are proprietary traders. These percentages indicate that the vast majority of 

manual-entry actions are on behalf of customer accounts, consistent with about 50% beginning 

an execution-exit gap using a market order to exit the market. In comparison, only about 32% of 

algorithmic-entry participants use a market order to exit. 

The inventory data in Table 1 reveal that a disproportionate percentage (31.6%) of 

cancellation gaps begin with a zero inventory compared to execution gaps (12.3%). These are 

state variables defined for each gap. In addition to the zero inventory measure, they also include 

whether an execution adds to (or subtracts from) a current long or short inventory position. For 

cancellation exits these measures calculate whether the cancelled order “would have” added to or 

subtracted from the existing inventory position. These percentages sum to 100% when the zero 

inventory measure is included. Thus in the hazard rate regressions, the zero inventory variable is 

omitted, so the hazard rate effects for inventory adjustments are relative to the zero inventory 

hazard rate. Note that these data show that about 64% of the execution exits begin after the 

participant receives a confirmation that adds to the existing inventory. The majority of these 

latency gaps are then for participants who are building positions. In contrast, the cancellation-

exit gaps are almost equally distributed between building and reducing inventories should the 

cancelled order execute. 

10 Results for quantities and counts are very similar because the median order size is one contract in the E-mini 
futures market. 
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The market-wide cancel, execution, and new order quantity variables show smaller 

averages and medians for algorithmic- than manual-entry participants. This is consistent with the 

smaller average gap latency for algorithms. Finally, average order sizes for both executions and 

cancellations tend to be similar for algorithmic- and manual-entry participants, except the 

medians are two contracts for algorithms versus one contract for manuals in the cancellation-exit 

gaps. 

In addition to the proportional hazard model, we institute a bootstrap procedure to equalize 

the effects that arise because some participants are more active than others. For example, Table 1 

shows that algorithmic-entry participants average 548 execution-exit gaps while manual-entry 

participants average only 21 gaps. An even larger difference in these averages arises for 

cancellation-exit gaps. Thus, in a proportional hazard regression with all sample gaps, the 

behavior of algorithmic participants will receive greater weight in coefficient estimates. This is 

fine for inferences about the average latency gap, but not okay if we want to know about hazard 

rates for the average participant. To examine the effects at the participant level, we randomly 

select one latency gap for each participant forming a participant-level sample. The proportional 

hazard regression is then estimated across this sample, and the process is repeated for 500 

random samples. The average coefficients across these samples show the hazard rate at the 

participant level. 

4. Empirical Analysis 

We begin by providing a more general analysis of how long participants in these markets wait 

before re-entering an order after an exit message signal. The distribution that describes this 

behavior is known as a survival curve. Figure 2 shows survival curves for participants grouped 
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by order entry (manual or algorithmic) and customer type (proprietary or customer-initiated 

order). These data are for latency gaps measured from an execution message to a new order by 

these participants for the first day of our sample, August, 1, 2014. The upper panel shows 

survival curves for all observations while the lower panel bootstraps the data into 500 equal-

weighted samples such that each participant is observed once in every sample. The bootstrap 

method shows how survival rates differ between the participant and message-gap levels. 

The solid line crossing both graphs in Figure 2 highlights the 50% cutoff for each group. 

This line identifies the latency gap (horizontal axis) when one-half of observed new orders have 

been submitted after receiving a prior execution message. Both panels show that the 50% latency 

cutoff implies that algorithmic-entry traders are quicker to respond versus manual-entry traders 

after an execution signal. The ‘all’ observation curves in the upper panel show algorithmic 

proprietary traders are the quickest group with 50% of the observations responding with new 

orders in less than 200 milliseconds. In contrast it takes manual proprietary traders over 9 

seconds on average for one-half of the observations to respond. 

The lower panel in Figure 2 emphasizes the weighting problem created when all 

observations are collected into a single sample. The survival curves in this panel are for the 

average participant. There are meaningful differences between the survival curves shown here 

and those in the upper panel. Moreover, the groups used here (manual versus algorithmic) offer 

only limited controls for this heterogeneity. This point is clear from comparing the intersections 

of the 50% cutoff line in the lower panel to those in the upper panel. The cutoff line does not 

cross either manual-entry survival curve in the lower panel, so the cutoffs for those participant 

groups exceed the 15-second boundary on the horizontal axis. More significantly, the new cutoff 

for the algorithmic proprietary group increases latency time by a factor of 25 to just over 5 
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seconds, and by a factor of 4 to nearly 14 seconds for the customer-based algorithmic group. 

These results reveal how conclusions about market behavior may be meaningfully affected by 

disproportionate activity levels across participants.  In other words, inferences drawn from all 

observations will be about the average observation, not the average participant. 

4.1 Execution and Cancellation Exits 

Tables 2 and 3 contain the estimates of the proportional hazard model and also the 

estimates using the bootstrap method. Table 2 reports results for a latency model of the time 

between order execution and new order entry. Table 3 shows results for the latency between 

order cancellation and new order entry. The results are grouped using two model 

specifications—one without (Model I and III) and one with (Model II and Model IV) time-

varying variables. The bootstrap results are shown in Models III and IV. Each model shows 

estimated hazard rates and p-values for covariates in two columns. The first column shows the 

effects based on the new order being a limit order (i.e., liquidity providing), and the second 

column shows the effect when the new order is a market order (i.e., liquidity demanding). Both 

sets of covariates are included in the same estimated model. The bootstrap results show the 

average hazard rate across the 500 randomly drawn samples, with 95% confidence intervals 

shown below these averages. Note that the number of observations/participants, percent of 

censoring in the sample, and Generalized R-squareds are shown at the bottom of each model. 

Because the proportional hazard model is exponential, the hazard rates are calculated as 𝑒𝑒𝛽𝛽� , 

where �̂�𝛽 is the estimated coefficient in these regressions. The multiplicative nature of these 

models implies that we interpret hazard rates as relative ratios for dummy variables. For 

example, Model I in Table 2 shows the hazard is 1.089 for manual-entry proprietary accounts 
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who submit limit orders to end a gap. The omitted category here is manual-entry customer 

accounts. This estimate means that the hazard of submitting a new order for manual-entry 

proprietary accounts is 1.089 times the hazard for manual-entry customer accounts, which makes 

new orders from manual-entry proprietary accounts 8.9% more likely in the next instant of time. 

Similarly the hazard rate of 0.884 for the “Last Execution is a Market Order” covariate implies 

that those who submit limit orders to end an execution-exit gap are 11.6% less likely than those 

whose last execution was a limit order to end the gap.11 With continuous variables, such as any 

of the quantity covariates, subtracting one from the hazard ratio and multiplying by 100 gives the 

percentage change in the hazard for each one-unit increase in the covariate. Our interpretation of 

these effects uses a one unit change in the covariate for individual quantities, but for market level 

quantities we examine the unit change in 1,000s. 

The interpretation of hazard ratios allows us to compare covariate effects to an omitted 

group as well as make comparisons across covariates who condition on the same omitted group. 

There are two covariate groups with the same omitted variable in these hazard rate tables. The 

first contains sample-state covariates. These are manual proprietary, algorithmic proprietary and 

algorithmic customer, with the omitted group being manual customer accounts. The second 

group contains gap-state covariates for inventory effects. These are “last execution adds to long 

position,” “last execution adds to short position,” “last execution reduces a long position” and 

“last execution reduces a short positon,” with the omitted variable being a zero-inventory 

position. For Table 3, the inventory group is the same but it is measured by what the cancelled 

order would have done to inventory. 

11 The multiplicative effect implies equal hazards when is the hazard ratio is 1. When it is less than one as in this 
example, then the effect is a fraction of the omitted factor. That is, 88.4% of the hazard when last execution was a 
limit order to end the gap, or equivalently interpreted as (1-0.884)*100% = 11.6% less likely. 
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Several results stand out for the full sample in Table 2. The hazard ratio for algorithmic 

proprietary accounts in Model I is 3.14 times the omitted covariate hazard (a manual customer 

account) and is the second largest hazard ratio in this table. An effect of this magnitude also 

arises for this covariate in Table 3 when the latency gap begins with a cancelled order. This 

hazard implies that algorithmic proprietary accounts are 1.49 (1.58) times more likely to end an 

execution-exit (cancel-exit) gap in the next instant of time if the new order is a limit order versus 

a market order. It appears that returning to the book with a new limit order after an execution 

(cancellation) takes time precedence over creating an automatic execution using a market order. 

An exception to this limit order preference is the case when the new order is at the same 

price as the last execution. The participant here appears willing to chase that price as the hazard 

for a market order is 3.19 times the hazard when the price for the new order is different than the 

last execution price. In contrast, when a new limit order is submitted at the last execution price 

the hazard is only 1.58 times this hazard at a different price. These relatively high hazard effects 

based on the last execution price may arise because some participants are working a larger order. 

They may thus be trying to continue executing the remainder of the order at a favorable price. 

Note that this strong market-order effect also arises in Table 3 when the new order is at the last 

cancel price. In this case, the participant may or may not be working a larger order, but has 

decided that immediate execution is preferred. Also, these market-order hazard effects are 

smaller when time-varying covariates are introduced in Model II for Tables 2 and 3, but they still 

maintain their high relative magnitudes. 

A different type of behavior arises when the execution that starts the latency gap is a 

market order. Here the hazard rates in Table 2 are all less than one, so this event slows down the 

likelihood of a new order in the next instant of time compared to an execution of a limit order 

21 



 
 

 
 

 

      

   

    

    

   

   

  

    

 

    

    

    

   

 

 

     

    

      

   

  

  

   

starting the gap. Specifically, in Model I a new limit order is 11.6% less likely (as noted above) 

and a new market order is 16.8% less likely to end the gap compared to when the last execution 

is a limit order. In effect if participants provide liquidity by executing from the book they are 

more likely to continue to participate in the next instant of time than if they take liquidity with a 

market order. As market orders bear a cost of one-half the effective spread, it stands to reason 

that participants may re-think their actions if they have just incurred this cost relative to the case 

when they have implicitly received one-half the effective spread by executing from the book. 

In Tables 2 and 3, inventory effects are measured relative to the case in which participants 

hold a zero inventory after an execution or before the cancellation of an order, respectively. The 

hazard rates after an execution-exit indicate that new limit orders from a non-zero inventory 

position are more likely to arise than those from a zero inventory position. Market orders from 

non-zero inventory positions are found less likely to arise than such orders from a zero inventory 

position when these orders add to a position, but are equally or slightly more likely when they 

reduce positions towards a zero inventory. That is, those with zero inventories are more likely to 

take additional liquidity from the market than those with non-zero inventories after an inventory-

increasing execution. In total, the implication is that participants with a non-zero inventory are 

more likely to enter new limit orders versus new market orders for position adjustments. 

Importantly, in Model’s I and II these hazard adjustments are uniformly greater when the 

participant’s action seeks to move inventory towards a zero balance compared to accumulating a 

larger (long or short) inventory. To the extent that these instantaneous probabilities translate into 

speed measures, participants can be said to move more quickly towards a zero inventory than 

they move away from this level. 
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The same models in Table 3 show a different response strategy when a cancelled order 

would have affected an existing non-zero inventory position. For each inventory covariate, the 

hazard rate response is nearly the same between a new limit or market order, and greater than 

one. Thus, the likelihood of a new limit or market order is higher from a non-zero than a zero-

inventory position after a cancellation. All together these inventory results suggest that exits 

which create or leave a zero inventory position make participant’s less likely to supply new 

liquidity, and in the case of execution-exits more likely to demand new liquidity. 

Model II in Tables 2 & 3 includes time-varying covariates in the regressions. These are 

based on measured quantities. The “quantity executed” and quantity cancelled” covariates use 

the quantity for the individual account, while the other quantity measures represent the volume 

of executions, new orders, and cancellations by the entire market (excluding this account) in the 

latency gap. These market-wide variables are measured in 1,000s of contracts. Subtracting one 

from each estimated hazard and multiplying by 100 provides the percentage change in the hazard 

for a one-unit change in the covariate. The results in both tables for the individual quantity 

covariate suggest a negligible or zero effect for changing the initial order size by one contract. 

In contrast, more activity in the market has a measurable effect on these hazards. The 

generalized R-squared increases by 46% and 69% from Model I to Model II in Tables 2 & 3, 

respectively.12 Note that we observe similar R-squared increases in all tables when we add these 

time-varying covariates to the model. To compute the effects for these covariates, we evaluate 

the hazard response using a 10% change in the mean market volume as reported in Table 1. For 

example, a 10% change in average execution volume is 511 contracts, which is 0.511 units of the 

12 The generalized R-squared is defined as 𝑅𝑅2 = 1 − 𝑒𝑒𝑥𝑥𝑒𝑒[−𝜒𝜒2/𝑁𝑁], where 𝜒𝜒2is the chi-squared statistic for a test of 
whether the covariates have a zero coefficient and 𝑁𝑁 is the sample size in the proportional hazard regression. Magee 
(1990) recommends this measure as helpful for interpreting likelihood-based inference measures. 
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“quantity executed during the gap” covariate. This translates to a 1.0% increase in the hazard of a 

new limit order (0.551*(1.018-1)*100) and a 0.1% increase in the hazard of a new market order. 

For the “new orders in the market” covariate, a 10% change in volume after an execution 

translates into 1.445 units of the covariate. This change implies a 2.6% increase in the hazard of 

a new limit order and a 3.3% increase in the hazard of a new market order. Similarly a 10% 

change in volume for the “market cancellations after an execution” covariate translates into 

0.972 units of the covariate. This change implies a 6.7% decrease in the hazard of a new limit 

order and a 5.4% decrease in the hazard of a new market order. Thus for the same percentage 

change in covariate volume, there are much greater effects on execution-gap latency with higher 

cancel volume and higher new order volume than higher execution volume. 

One interpretation of these results is that higher cancel volume implies that the rest of the 

market is removing liquidity, which makes an individual account pause before going against the 

tide to add new liquidity or to execute at current prices. For changes in market-wide new order 

volume, an individual account may see new orders as competitors, which creates an incentive to 

act as the queue in the order book lengthens. The slightly greater likelihood of a new market 

order message is consistent with this view. The hazard effects for market-wide executions are 

small, but they suggest that greater realized liquidity has a positive effect on the likelihood of a 

new limit order after an execution. 

The effects for these time-varying covariates after a cancellation are notably different than 

after an execution. Following the procedures above, the quantity effects in Table 3 show that a 

10% change in market-wide execution volume results in a 2.1% decrease in the hazard of a new 

limit order and a 2.4% decrease in the hazard of a new market order after a cancellation exit. A 

10% change in new order volume results in a 5.6% increase in the hazard of a new limit order 
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and a 6.9% increase in the hazard of a new market order. Lastly, a 10% change in cancellation 

volume results in a 2.6% decrease in the hazard of a new limit order and a 2.1% decrease in the 

hazard of a new market order. 

The logic behind these cancel-exit results appears to be that more cancels by others in the 

market act to confirm the rationale behind the individual’s cancel decision, possibly that there is 

now more risk to keeping an order on the book. If new order volume increases after a cancel, 

then concern about risk on the book is reduced, so participants are more likely to participate with 

either a new limit or market order.13 These two effects mirror what is found after an execution-

exit. A difference arises for execution volume during a latency gap created by a cancellation. 

Here the increase in market execution volume suggests that there is greater liquidity during the 

gap, but it appears that participants see such executions as a missed opportunity or as 

confirmation of adverse selection risk instead of confirmation that they may execute an order 

fairly quickly. We conclude that conditioning on execution-exits provides evidence of a 

participant’s willingness to execute an order, so more observed liquidity encourages a new order 

response. However, conditioning on a cancellation, provides an ambiguous signal on the 

willingness of a participant to execute an order. Thus, participants may delay new order entry 

even if market liquidity increases after a cancellation. 

4.2 Bootstrap Results for Execution and Cancellation Exits 

Tables 2 and 3 also report average hazard rates after bootstrapping these data to give equal 

weight to each participant. Below each average hazard rate are the 95% confidence intervals 

13 This argument may differ by strategy. A market-making program may be more likely to enter new orders after 
cancelling as it tries to restore two-sided quotes, whereas directional or more aggressive accounts may wait longer. 
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obtained across the 500 bootstrap samples. Models III and IV replicate the covariates included in 

models I and II, respectively, for these tables. For the most part, the estimated hazards confirm 

the results found when using all of the sample data. However, it is also clear that the magnitude 

of these hazard estimates change at the participant level. 

Specifically, the hazards for algorithmic proprietary accounts are of a smaller magnitude 

and no longer suggest sizable differences between limit and market order effects. In fact, for 

execution exits, the hazard of a new limit order is now less than the hazard of a new market 

order. Focusing on Model IV shows that the effects of submitting a new limit order do not now 

affect the covariates for when the “last execution is a market order” or “new order is at the 

execution price.” This insignificance also holds for cancel-exits when the covariate is “new order 

at the last cancel price.” In these cases, only the submission of a market order generates a hazard 

effect in the same direction as noted for the full sample. 

The value of these bootstrap estimates is to show that the hazard rate effects for an average 

participant are reduced compared to those using all observations. Thus, the effects of certain 

high-activity participants tend to overstate the likelihood of new order activity (i.e., liquidity 

providing or liquidity taking) by the average participant. 

4.3 Zero-Inventory Exits 

The finding that exits which create or leave a zero inventory position make participants less 

likely to supply new liquidity suggests that participants with a zero-inventory position may be 

waiting for more signals before re-entering the market with new orders. This issue is investigated 

in Tables 4 and 5 for execution and cancellation exits, respectively. The estimated hazard rates in 

these tables characterize the actions of only those participants with zero inventory positions. 
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Thus, the finding in Table 4 that algorithmic-proprietary accounts are 5.02 times more likely to 

respond with new limit orders after an execution than manual customer-based accounts is only 

applicable to the population of accounts with zero inventories. 

The main reason for examining these zero-inventory level data is that this is a natural 

position in which both algorithmic- and human-based strategies would restart their logic. It may 

then be expected that some of these covariates would have a different effect on the likelihood of 

new order entry. Comparing the covariates in models II and IV between Tables 2 and 4 finds 

only two cases in which the estimated hazard reverses its effect. In model II, the time varying 

covariate, “quantity executed during the gap,” has an increasing effect on both limit and market 

order entry, but once a zero-inventory position is reached there is a decreasing effect, meaning 

that the higher the level of execution volume in the gap the lower the likelihood of new order 

entry. This effect appears analogous to what is observed for this variable using cancel-exits. A 

zero-inventory position may thus give rise to the same market-based considerations as a cancel 

exit. The second case is that the hazard for manual proprietary accounts show an increasing 

likelihood of submitting a new limit order compared to manual customer accounts in the 

bootstrap results. In Table 2, this state-level covariate shows a decreasing likelihood of a new 

limit order. We offer no obvious reason for this finding. 

There is only one meaningful hazard rate change for the zero-inventory cases after a 

cancellation exit. Model II in Table 5 shows that when the new order is at the last cancel price 

the likelihood of a new limit order is reduced relative to when the new order is not equal to the 

last cancel price. The impact here is fairly large as those who submit limit orders to end a gap are 

30% more likely when the new order is at the last cancel price versus not as shown in Table 3. 
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Table 5 shows that this impact is now 14.7% less likely when starting at a zero inventory 

position. 

Except for these selective reversals, what is interesting about the comparison between the 

zero-inventory results and the full sample findings is that the magnitudes of the hazard effects 

are increased for most of the estimates in the zero-inventory tables. For example, the zero-

inventory bootstrap results in Table 4 indicate that the hazard for an algorithmic proprietary 

participant who submits a limit order to end the gap is 2.07 times the hazard of a manual 

customer participant. Table 2 shows this ratio to be 1.39 times. Similarly the hazard of a market 

order ending the gap in Table 2 when the last execution is a market order is 81% of the hazard 

when the last execution is not a market order. This percent changes to 63% in the bootstrap 

results in Table 4. Several of the cancel-exit hazard estimates also show meaningful changes in 

the magnitudes of these relative effects. 

In summary, there are few reversals of hazard effects when using only zero-inventory data, 

and the generalized R-squared remains high in the time-varying models. The zero-inventory 

position may be said to speed up or add delays to the average responses found in the full sample 

results. These findings suggest that the covariates included in these models send fairly consistent 

signals to participants even when they fully removed from the market. 

5. Conclusions 

We have examined latency, defined by how long it takes a participant to place a new order after 

receiving an exit signal from the market, either an execution or cancellation exit. Our goal was 

to describe the covariates that affected this latency decision with the view that these covariates 

are signals that lead to participant actions. We identified several covariates that were significant 
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in a proportional hazards model. These covariates distinguished hazard rate effects between 

algorithmic and manual-entry participants, and isolated the effects of inventories on new order 

latency. The most important of these covariates appear to be those whose signals are generated 

from market-wide data observed during the period of latency. Such market-based signals include 

the volume of executions, cancellations and new orders during the latency period. These 

covariates have meaningfully large explanatory power when included in the hazard rate models. 
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Figure 1: New Order Latency 

This figure illustrates new order latency arising after an execution signal. Two traders (A and B) are 
shown. Execution signals for each trader are marked by vertical dashed lines as belonging to these traders 
(X) or other traders in the market (m). The new order entry times (t) of each trader are marked on the time 
lines below the figure and depend on when they re-enter a new order (O). The activity arising in the 
market during the latency gap for each trader is captured by the shaded boxes. 



 

 

 
 
 

    
 

   
         

    
   
  

 
 
 

00 
0.95 Manual 

0.90 (All Observations) 

0.85 

0.80 
0.75 

m 0.70 .; 0.65 

w 0.60 

Trades for OJstorners 

C 
0 

0.55 
0.50 

C 
~ 
~ 

0,45 

il 0.40 

·~ 0.35 
en 0.30 

0.25 

0.20 
0.15 

0.10 
0.05 

0.00 

0:00:00 0:00:02 0:00:04 0:00:06 0:00:08 0:00:10 0:00:12 0:00:14 00:00 

1.00 

0.95 Manual 
0.90 (Equal Weight Observations) 

0,85 

0.80 
0.75 

m 0.70 

.~ 0.65 

w 0.60 
C 0.55 
0 

1 0.50 

0.45 

! 0.40 

0.35 
en 0.30 

0.25 
0.20 

0.15 

0.10 
0.05 

0.00 

0:00:00 0:00:02 0:00:04 0:00:06 0:00:08 0:00:10 0:00:12 0:00:14 00:00 

lime in Seconds 

0:00:02 0:00:04 

0:00:02 0:00:04 

Algorithmic 
(All Observations) 

Proprietary Traders 

0:00:06 0:00:08 0:00:10 

Algorithmic 
(Equal Weight Obseroations) 

0:00:12 0:00:14 

Trades for C.Ustomers 

Proprietary Traders 

0:00:06 0:00:08 0:00:10 0:00:12 0:00:14 

Time in Seconds 

Figure 2: Survival Curves for E-mini Futures: Execution-to-New-Order Latency Gaps 

This figure shows survival curves for new order latency defined after an execution removed liquidity from the order 
book. These data are for the first day of the sample, August 1, 2014. The top two panels show survival curves using 
all latency gap observations separated by whether the execution is for a proprietary or customer account. The left 
panel is for manual-entry participants and the right panel is for algorithmic-entry participants. The lower two panels 
show the same data after using the bootstrap method to generate 500 equally-weighted samples.  The average gap 
latencies for each participant are computed and shown in the bottom panels. 



 

 

                                                          
                                                          
                                                     

                       
         

                                                          
                                                                   
                                                        

                       
         

Table 1 
Summary Statistics for "New Order Latency" Events 

Summary data are presented for the September 2014 expiration of the E-mini futures contract using a sample of six days from 
August 1-8, 2014. The mean and median of sample covariates are shown. These statistics are measured in the time gap 
between the last execution and the next new order entry in Panel A and the last cancellation and the next new order entry in 
Panel B. The time gap is expected to approximate new order latency--the time elapsed until sufficient signals arise to generate 
a new order. These data include both participants who acted for their own accounts (proprietary traders) and participants who 
acted on behalf of customers. The fraction of proprietary traders is show for each grouping. The summaries are for all gaps in 
the sample, and for algorithmic and manual-entry accounts, separately. Covariates shown are cancel, execution, and new 
order volumes within the gap (measured market wide), inventory at the beginning of a gap, and the absolute value of 
beginning inventory. Additional statistics measure the percent of gaps that start with a zero inventory and how that inventory 
changes with the execution (or would without the cancellation), use a market order to execute at the beginning of execution 
gaps, and set the new order price equal to the price at execution or the limit price on the cancellation message. The number of 
gaps and participants counts are also shown. 

E-Mini Futures Contract 
Full Sample Algo-Entry Manual-Entry 

Signal Variable Mean Median Mean Median Mean Median 

Panel A:  New Order Latency Measured from Last Execution to Next New Order Entry 
Gap Latency (seconds) 40.50 0.77 16.87 0.21 139.20 31.30 
Begin Gap Inventory -0.70 0.00 -0.74 0.00 -0.57 0.00 
Abs(Inventory) 46.10 5.00 52.40 7.00 19.68 1.00 
Execution Order Size 3.34 1.00 3.29 1.00 3.52 1.00 
Begin Gap with Zero Inventory 12.3% 10.6% 19.5% 
Execution adds to Long Inventory 32.1% 31.4% 35.1% 
Execution adds to Short Inventory 31.7% 30.6% 36.4% 
Execution reduces Long Inventory 11.7% 13.5% 4.3% 
Execution reduces Short Inventory 12.1% 13.9% 4.7% 
Market Order at Execution Exit 35.2% 32.0% 49.0% 
New Order at Execution Price 46.7% 55.3% 10.5% 
Proprietary Traders 9.2% 37.5% 5.2% 
In Gap: 
Cancel Volume 9,728 728 4,196 493 12,298 3,283 
Execution Volume 5,111 349 2,168 238 13,135 3,329 
New Order Volume 14,445 1,032 6,183 701 18,394 4,844 

Participant Count 19,465 2,752 17,138 
Gap Count 1,868,121 1,508,183 359,938 

Panel B:  New Order Latency Measured from Last Cancellation to Next New Order Entry 
Gap Latency (seconds) 16.17 0.55 5.34 0.45 123.67 23.55 
Begin Gap Inventory 0.22 0.00 0.25 0.00 -0.09 0.00 
Abs(Inventory) 26.56 5.00 28.38 3.00 8.49 0.00 
Cancellation Order Size 6.13 2.00 5.99 2.00 7.46 1.00 
Begin Gap with Zero Inventory 31.6% 28.8% 58.4% 
Cancel would add to Long Inventory 16.6% 17.4% 9.0% 
Cancel would add to Short Inventory 17.6% 18.5% 9.0% 
Cancel would reduce Long Inventory 17.0% 17.6% 11.4% 
Cancel would reduce Short Inventory 17.2% 17.7% 12.2% 
New Order at Cancel Price 54.3% 58.6% 11.1% 
Proprietary Traders 8.9% 43.4% 4.4% 
In Gap: 
Cancel Volume 3,666 270 1,201 235 26,643 6,877 
Execution Volume 1,209 72 365 61 9,083 1,818 
New Order Volume 5,457 436 1,799 386 39,561 10,108 

Participant Count 14,189 1,883 12,536 
GapCount 2,287,090 2,077,747 209,343 



 

 

  
    

 

 

 

 

 

 

 

 

Table 2 
Latency between Order Execution and New Order Entry 

Proportional hazard regression estimates are shown for the latency between order execution and new order entry in the E-Mini futures contract. 
Models are estimated for two cases of population inference: Full sample of orders for order inference and a bootstrap simulation for inferences at the 
participant level. The bootstrap simulation includes 500 random samples in which a gap for each participant is drawn once in each sample. The 
simulation gives equal weight to all participants and removes effects caused when a few participants have many gaps. Interaction terms are included 
to measure how each covariate is affected if the new order is a market order. These effects are shown in the column labeled "Market-order" effects for 
ease of exposition. Covariates are static and time-varying. Static covariates are dummies for the following: manual participants who are proprietary, 
algorithmic participants who are proprietary, algorithmic participants handling customer orders, new order equals the last execution price, last 
execution is a market order, last execution adds to existing long inventory, last execution adds to existing short inventory, last execution subtracts 
from existing long inventory, and last execution subtracts from existing short inventory. The omitted variables that compare to these dummies are a 
manual participant who is acting for a customer and the case where inventory reaches zero at the last execution. The quantity of contracts traded at 
the last execution is also included as a static variable. Time-varying covariates are totals for execution quantity, new order quantity, and cancellation 
quantity measured during the gap. The model is estimated using a partial likelihood function that takes account of time dependent covariates. The 
table shows the estimated hazard rate for each covariate and the p-value of the covariate's estimated coefficient. The generalized pseudo r-squared, 
percentage of censored data, and number of observations/participants are shown at the bottom of the table for each model. For bootstrap results, the 
95% confidence interval (95% C.I.) of the average hazard ratio and the generalized r-squared is shown. 

Full Sample Bootstrap Sample 
Hazard ratio/p-value Hazard ratio/95% C.I. 

Model I Model II Model III Model IV 

Limit Market Limit Market 
Order Order Order Order Limit Order Market Order Limit Order Market Order 

Covariate Effects Effects Effects Effects Effects Effects Effects Effects 

Manual Proprietary 1.089 1.142 0.990 1.050 0.861 1.233 0.889 1.182 
Account <0.001 <0.001 0.179 <0.001 (0.81, 0.91) (1.14, 1.33) (0.83, 0.96) (1.08, 1.29) 
Algorithmic Proprietary 3.139 2.101 2.095 1.574 1.550 1.833 1.385 1.527 
Account <0.001 <0.001 <0.001 <0.001 (1.46, 1.65) (1.66, 2.03) (1.28, 1.49) (1.34, 1.70) 
Algorithmic Customer 1.416 1.539 1.157 1.352 1.171 1.247 1.147 1.244 
Account <0.001 <0.001 <0.001 <0.001 (1.12, 1.22) (1.17, 1.33) (1.09, 1.21) (1.15, 1.35) 
New order at last execution 1.579 3.187 1.520 2.483 1.209 2.390 1.034 2.065 
price <0.001 <0.001 <0.001 <0.001 (1.15, 1.27) (2.22, 2.56) (0.98, 1.09) (1.91, 2.23) 
Last execution is a market 0.884 0.832 0.920 0.778 0.995 0.879 0.968 0.809 
order <0.001 <0.001 <0.001 <0.001 (0.96, 1.02) (0.84, 0.91) (0.94, 1.00) (0.77, 0.85) 
Last execution adds to long 1.281 0.920 1.263 0.875 1.691 0.798 1.513 0.691 
position <0.001 <0.001 <0.001 <0.001 (1.63, 1.75) (0,76, 0.84) (1.45, 1.58) (0,65, 0.73) 
Last execution adds to 1.301 0.933 1.286 0.883 1.670 0.846 1.541 0.744 
short position <0.001 <0.001 <0.001 <0.001 (1.61, 1.73) (0.81, 0.89) (148, 1.61) (0.70, 0.79) 
Last execution reduces 1.604 1.120 1.490 0.998 1.922 1.392 1.513 1.034 
long position <0.001 <0.001 <0.001 <0.001 (1.68, 2.18) (1.18, 1.62) (1.30, 1.74) (0.84, 1.24) 
Last execution reduces 1.617 1.139 1.502 1.006 1.998 1.412 1.588 0.989 
short position <0.001 <0.001 <0.001 <0.001 (1.74, 2.27) (1.19, 1.66) (1.37, 1.83) (0.80, 1.20) 
Quantity traded in last 0.997 0.999 0.998 0.999 0.997 1.000 0.998 1.000 
execution <0.001 <0.001 <0.001 0.001 (0.99. 1.00) (0.99. 1.00) (0.99. 1.00) (0.99. 1.02) 
Time-varying covariates 
Quantity executed during 1.018 1.002 0.966 1.013 
the gap <0.001 <0.001 (0.96, 0.97) (1.01, 1.02) 
New order quantity entered 1.018 1.023 0.932 0.932 
during the gap <0.001 0.001 (0.92, 0.94) (0.93, 0.94) 
Quantity cancelled during 0.929 0.944 0.997 1.008 
the gap <0.001 <0.001 (0.99, 1.01) (1.00, 1.01) 

Generalized R-Sqrd 32.0% 46.9% 10.8% 37.1% 
Percent Censored 4.3% 5.0% 18.9% 18.4% 
Observations/Accounts 1,868,121 1,613,993 19,465 18,594 



 

 

  
 

 
 

 

 

 

 

 

 

 

 

 

 

Table 3 
Latency between Order Cancellation and New Order Entry 

Proportional hazard regression estimates are shown for the latency of new order entry after the participant cancels an order for the E-Mini 
futures contract. Models are estimated for two cases of population inference: Full sample of orders for order inference and a bootstrap 
simulation for inferences at the participant level. The bootstrap simulation includes 500 random samples in which a gap for each participant 
is drawn once in each sample. The simulation gives equal weight to all participants and removes effects caused when a few participants have 
many gaps. Interaction terms are included to measure how each covariate is affected if the new order is a market order. These effects are 
shown in the column labeled "Market-order" effects for ease of exposition. Covariates are static and time-varying. Static covariates are 
dummies for the following: manual participants who are proprietary, algorithmic participants who are proprietary, algorithmic participants 
handling customer orders, new order price set at the cancellation price, cancellation adds to existing long inventory, cancellation adds to 
existing short inventory, cancellation subtracts from existing long inventory, and cancellation subtracts from existing short inventory. The 
omitted variables that compare to these dummies are a manual participant who is acting for a customer and the case where inventory is zero 
before the cancellation. The quantity cancelled is also included as a static variable. Time-varying covariates are market totals for execution 
quantity, new order quantity, and cancellation quantity measured during the latency gap. The table shows the estimated hazard rate for each 
covariate and the p-value of the covariate's estimated coefficient. The generalized pseudo r-squared, percentage of censored data, and number 
of observations/participants are shown at the bottom of the table for each model. For bootstrap results, the 95% confidence interval (95% 
C.I.) of the average hazard ratio and the generalized r-squared is shown. 

Full Sample Bootstrap Sample 
Hazard ratio/p-value Hazard ratio/95% C.I. 

Model I Model II Model III Model IV 

Limit Market Limit Market Market Market 
Order Order Order Order Limit Order Order Limit Order Order 

Covariate Effects Effects Effects Effects Effects Effects Effects Effects 

Manual Proprietary 1.079 0.871 0.978 0.770 1.042 0.933 1.051 0.805 
Account <0.001 <0.001 0.179 <0.001 (0.97, 1.12) (0.84, 1.04) (0.96, 1.14) (0.69, 0.92) 
Algorithmic Proprietary 3.967 2.508 2.488 1.776 1.915 1.482 1.600 1.365 
Account <0.001 <0.001 <0.001 <0.001 (1.81, 2.02) (1.31, 1.68) (1.45, 1.75) (1.14, 1.59) 
Algorithmic Customer 2.282 1.365 1.631 1.186 1.155 1.477 1.151 1.413 
Account <0.001 <0.001 <0.001 <0.001 (1.09, 1.21) (1.36, 1.59) (1.07, 1.23) (1.22, 1.60) 
New order at last cancel 1.338 1.783 1.300 1.714 1.105 1.557 1.013 1.306 
price <0.001 <0.001 <0.001 <0.001 (1.04, 1.17) (1.41, 1.71) (0.95, 1.08) (1.16, 1.45) 
Cancelled Order adds to 1.156 1.154 1.149 1.060 0.988 0.855 1.002 0.901 
long position <0.001 0.885 <0.001 <0.001 (0.94, 1.04) (0.80, 0.91) (0.93, 1.09) (0.81, 0.99) 
Cancelled Order adds to 1.167 1.164 1.161 1.061 1.082 0.865 1.080 0.835 
short position <0.001 0.843 <0.001 <0.001 (1.03, 1.14) (0,80, 0.92) (1.01, 1.15) (0.76, 0.93) 
Cancelled order reduces 1.192 1.239 1.173 1.101 1.736 1.660 1.375 1.510 
long position <0.001 <0.001 <0.001 <0.001 (1.65, 1.84) (1.53, 1.79) (1.27, 1.47) (1.32, 1.71) 
Cancelled order reduces 1.204 1.258 1.186 1.110 1.688 1.633 1.342 1.200 
short position <0.001 <0.001 <0.001 <0.001 (1.61, 1.78) (1.52, 1.75) (1.26, 1.43) (1.08, 1.32) 

0.998 0.999 0.998 0.999 1.000 1.000 1.000 1.000Quantity cancelled 
<0.001 <0.001 <0.001 0.001 (0.99, 1.00) (1.00, 1.00) (1.00, 1.00) (0.99, 1.01) 

Time-varying marketwide covariates 
Quantity executed during 0.827 0.802 0.781 0.779 
the latency gap <0.001 <0.001 (0.78, 0.79) (0.77, 0.79) 
New order quantity during 1.102 1.127 1.138 1.139 
the latency gap <0.001 0.001 (1.13, 1.14) (1.13, 1.15) 
Quantity cancelled during 0.875 0.864 0.867 0.867 
the latency gap <0.001 <0.001 (0.86, 0.87) (0.86, 0.87) 

Generalized R-Sqrd 20.0% 33.9% 5.5% 58.2% 
Percent Censored 1.7% 2.0% 16.1% 17.5% 
Observations/Accounts 2,287,090 1,979,870 14,189 12,969 



 

 

 

  
 

 
 

 

 

 

 

 

 

 

 

Table 4 
Latency between Order Execution and New Order Entry Starting from Zero Inventory 

Proportional hazard regression estimates are shown for the latency between order execution and new order entry in the E-Mini futures 
contract. Models are estimated for two cases of population inference: Zero inventory sample for order inference conditional on a zero 
inventory at the start of a gap and a bootstrap simulation for inferences at the participant level. The bootstrap simulation includes 500 
random samples in which a gap for each participant is drawn once in each sample. The simulation gives equal weight to all participants 
and removes effects caused when a few participants have many gaps. Interaction terms are included to measure how each covariate is 
affected if the new order is a market order. These effects are shown in the column labeled "Market-order" effects for ease of exposition. 
Covariates are static and time-varying. Static covariates are dummies for the following: manual participants who are proprietary, 
algorithmic participants who are proprietary, algorithmic participants handling customer orders, new order equals the last execution 
price, and last execution is a market order. The omitted variables that compare to these dummies are a manual participant who is acting 
for a customer. The quantity of contracts traded at the last execution is also included as a static variable. Time-varying covariates are 
totals for execution quantity, new order quantity, and cancellation quantity measured during the gap. The model is estimated using a 
partial likelihood function that takes account of time dependent covariates. The table shows the estimated hazard rate for each covariate 
and the p-value of the covariate's estimated coefficient. The generalized pseudo r-squared, percentage of censored data, and number of 
observations/participants are shown at the bottom of the table for each model. For bootstrap results, the 95% confidence interval (95% 
C.I.) of the average hazard ratio and the generalized r-squared is shown. 

Zero Inventory Sample Bootstrap Sample 
Hazard ratio/p-value Average Hazard ratio/95% C.I. 

Model I Model II Model III Model IV 

Limit Market Limit Market Market Market 
Order Order Order Order Limit Order Order Limit Order Order 

Covariate Effects Effects Effects Effects Effects Effects Effects Effects 

Manual Proprietary 1.393 0.988 1.267 1.036 1.261 0.962 1.121 0.990 
Account <0.001 <0.001 <0.001 <0.001 (1.16, 1.37) (0.84, 1.07) (1.02, 1.22) (0.86, 1.12) 
Algorithmic Proprietary 5.020 3.000 3.214 2.166 2.582 1.900 2.070 1.623 
Account <0.001 <0.001 <0.001 <0.001 (2.42, 2.74) (1.68, 2.14) (1.92, 2.23) (1.38, 1.86) 
Algorithmic Customer 1.544 0.962 1.386 0.950 1.370 1.042 1.323 1.036 
Account <0.001 <0.001 <0.001 <0.001 (1.29, 1.45) (0.95, 1.14) (1.24, 1.41) (0.93, 1.15) 
New order at last execution 1.801 2.842 1.742 2.268 1.521 2.174 1.228 1.857 
price <0.001 <0.001 <0.001 <0.001 (1.42, 1.62) (1.93, 2.43) (1.14, 1.31) (1.61, 2.11) 
Last execution is a market 0.906 0.835 0.921 0.807 0.962 0.717 0.878 0.629 
order <0.001 <0.001 <0.001 <0.001 (0.93, 0.99) (0.69, 0.74) (0.84, 0.91) (0.60, 0.66) 
Quantity traded in last 0.997 0.994 0.999 0.993 0.999 0.995 1.001 0.994 
execution <0.001 <0.001 0.057 <0.001 (0.99, 1.00) (0.99, 0.99) (0.99, 1.00) (0.99, 1.00) 
Time-varying covariates 
Quantity executed during 0.989 0.983 0.970 1.009 
the gap <0.001 0.045 (0.96, 0.97) (1.00, 1.01) 
New order quantity entered 1.034 1.035 0.946 0.936 
during the gap <0.001 0.667 (0.94, 0.95) (0.93, 0.94) 
Quantity cancelled during 0.938 0.942 1.007 1.004 
the gap <0.001 0.230 (0.99, 1.02) (1.00, 1.01) 

Generalized R-Sqrd 43.7% 53.5% 6.4% 27.5% 
Percent Censored 8.2% 8.9% 25.8% 26.1% 
Observations/Accounts 230,019 207,043 10,877 10,561 



 

 

 

 
     

 

 

 

 

 

 

 

Table 5 
Latency between Order Cancellation and New Order Entry Starting from Zero Inventory 

Proportional hazard regression estimates are shown for the latency of new order entry after the participant cancels an order for the E-Mini 
futures contract. Models are estimated for two cases of population inference: Zero inventory sample for order inference conditional on a 
zero inventory at the start of a gap and a bootstrap simulation for inferences at the participant level. The bootstrap simulation includes 500 
random samples in which a gap for each participant is drawn once in each sample. The simulation gives equal weight to all participants and 
removes effects caused when a few participants have many gaps. Interaction terms are included to measure how each covariate is affected 
if the new order is a market order. These effects are shown in the column labeled "Market-order" effects for ease of exposition. Covariates 
are static and time-varying. Static covariates are dummies for the following: manual participants who are proprietary, algorithmic 
participants who are proprietary, algorithmic participants handling customer orders, and new order equals the last cancel price. The omitted 
variables that compare to these dummies are a manual participant who is acting for a customer. The quantity of contracts at the last cancel 
message is also included as a static variable. Time-varying covariates are totals for execution quantity, new order quantity, and cancellation 
quantity measured during the gap. The model is estimated using a partial likelihood function that takes account of time dependent 
covariates. The table shows the estimated hazard rate for each covariate and the p-value of the covariate's estimated coefficient. The 
generalized pseudo r-squared, percentage of censored data, and number of observations/participants are shown at the bottom of the table for 
each model. For bootstrap results, the 95% confidence interval (95% C.I.) of the average hazard ratio and the generalized r-squared is 
shown. 

Zero Inventory Sample Bootstrap Sample 
Hazard ratio/p-value Hazard ratio/95% C.I. 

Model I Model II Model III Model IV 

Limit Market Limit 
Order Order Order Market Order Limit Order Market Limit Order Market 

Covariate Effects Effects Effects Effects Effects Order Effects Effects Order Effects 

Manual Proprietary 1.190 0.888 1.125 0.746 1.130 1.026 1.084 0.838 
Account <0.001 <0.001 <0.001 <0.001 (1.05, 1.21) (0.93, 1.12) (0.99, 1.17) (0.73, 0.95) 
Algorithmic Proprietary 5.036 2.540 3.185 1.808 2.061 1.415 1.605 1.339 
Account <0.001 <0.001 <0.001 <0.001 (1.94, 2.19) (1.26, 1.61) (1.47, 1.74) (1.10, 1.59) 
Algorithmic Customer 1.931 1.019 1.528 1.024 1.106 1.272 1.107 1.364 
Account <0.001 <0.001 <0.001 <0.001 (1.05, 1.16) (1.17, 1.38) (1.03, 1.20) (1.18, 1.54) 
New order at last cancel 0.847 1.856 0.853 1.674 1.175 1.408 1.045 1.224 
price <0.001 <0.001 <0.001 <0.001 (1.11, 1.24) (1.27, 1.56) (0.97, 1.11) (1.08, 1.37) 

0.999 0.999 0.998 0.999 1.001 1.000 1.001 1.000Quantity cancelled 
<0.001 <0.001 <0.001 0.001 (1.00, 1.00) (0.99, 1.00) (1.00, 1.00) (0.99. 1.00) 

Time-varying marketwide covariates 
Quantity executed during 0.803 0.784 0.783 0.781 
the latency gap <0.001 <0.001 (0.78, 0.79) (0.77, 0.79) 
New order quantity during 1.124 1.137 1.139 1.137 
the latency gap <0.001 <0.001 (1.13, 1.15) (1.13, 1.14) 
Quantity cancelled during 1.012 0.863 0.864 0.869 
the latency gap <0.001 0.206 (0.86, 0.87) (0.86, 0.87) 

Generalized R-Sqrd 28.2% 45.4% 2.2% 58.9% 
Percent Censored 3.3% 3.7% 16.5% 17.9% 
Observations/Accounts 722,260 632,581 12,765 11,767 
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