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TAB                                                                            DESCRIPTION 

1.  Agenda for Meeting, Wednesday, July 14, 2010 

2.  Press Release: CFTC Announces Members of the CFTC’s Technology Advisory Committee 

3.  Technology Advisory Committee Members 

4.  J. Bates, Algorithmic Trading and High Frequency Trading: Experiences from the Market and Thoughts on 
Regulatory Requirements (July 2010).  

5.  B. Boultwood, HFT and Algorithmic Trading Issues and Regulatory Considerations (July 2010).  

6.  J. Castura, R. Litzenberger, and Richard Gorelick, RGM Advisors, LLC, Market Efficiency and 
Microstructure Evolution in U.S. Equity Markets: A High Frequency Perspective (April 22, 2010).  

7.  A. Chaboud, B. Chiquoine, E. Hjalmarsson, and C. Vega, Rise of the Machines: Algorithmic Trading in the 
Foreign Exchange Market, BD. OF GOVERNORS OF THE FED’L RES. SYS. INT’L FINANCE DISCUSSION 

PAPERS, No. 980 (October 2009).  

8.  J. Cvitanić and A. Kirilenko, High Frequency Trading and Asset Prices (March 11, 2010). 

9.  B. Durkin, The Impact of Algorithmic and High Frequency Trading on CME Group, Inc. Markets (July 2010).  

10.  Futures Industry Association, Market Access Risk Management Recommendations (April 2010).  
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CFTC’s Technology Advisory Committee 
1155 21st Street, N.W. 

Washington, DC 20581 
 

July 14, 2010 
Agenda 

 
11:45 a.m. to 12:00 p.m. Check-in with CFTC Reception – Lobby Level 

  

12:00 p.m. to 12:50 p.m. Lunch with CFTC Commissioners and Technology Advisory Committee 
Members, 9th Floor Conference Room 
 

  

1:00 p.m. to 5:00 p.m. TAC Meeting, Hearing Room 

  

1:00 p.m. to 1:10 p.m. Opening Remarks: Commissioner Scott D. O’Malia, Chairman, TAC 
 

1:10 p.m. to 1:30 p.m. Opening Remarks of CFTC Commissioners: Chairman Gary Gensler, 
Commissioner Michael Dunn, Commissioner Jill Sommers, and 
Commissioner Bart Chilton 
 

1:30 p.m. to 1:40 p.m. Overview of Meeting and Introduction of Presenters 
 

1:40 p.m. to 2:00 p.m. FIA’s Market Access Risk Management Recommendations, Mary Ann Burns, 
Executive Vice President, Futures Industry Association 
 

2:00 p.m. to 3:00 p.m. Discussion of FIA’s Market Access Risk Management Recommendations 
 

3:00 p.m. to 3:15 p.m. Break (Restrooms are located on the Mall Level) 
 

3:15 p.m. to 3:35 p.m. A Perspective on High Frequency Trading (HFT) from RGM Advisors, LLC, 
Richard Gorelick  
 

3:35 p.m. to 4:00 p.m. High Frequency Traders and Asset Prices, Andrei Kirilenko, Senior Financial 
Economist, CFTC Office of the Chief Economist 
 

4:00 p.m. to 4:45 p.m. Discussion of HFT presentations, debate on need for HFT best practices, 
and next steps for the TAC.   
 

4:45 p.m. to 5:00 p.m. Concluding Remarks of CFTC Commissioners: Chairman Gary Gensler, 
Commissioner Michael Dunn, Commissioner Jill Sommers, Commissioner 
Bart Chilton and Commissioner Scott D. O’Malia, Chairman, TAC 
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Commodity Futures Trading Commission 
Technology Advisory Committee Members 

 
Dr. John Bates 
Senior Vice President, Chief Technology Officer and Head of Corporate Development 
Progress Software 

  Dr. Bates is Senior Vice President, Chief Technology 
Officer (CTO) and head of Corporate Development for Progress Software.  Dr. Bates is 
recognized as a driving force behind the emergence of complex event processing (CEP) and 
the commercial use of event processing applications in business solutions, including capital 
markets trading, risk and compliance, telecommunications, fraud prevention, and smart 
logistics.  Prior to joining Progress Software, Dr. Bates was the co-founder, president and 
CTO of Apama (acquired by Progress Software in April 2005).  Before Apama, Dr. Bates 
was a tenured academic at Cambridge University, where he directed the research into 
distributed computing systems. 
 
            
Brenda Boultwood 
Chief Risk Officer 
Constellation Energy 

  Ms. Boultwood is Senior Vice President and Chief Risk 
Officer for Constellation Energy.  She leads risk management activities for Constellation 
Energy and its businesses, including defining and assessing enterprise-wide business risks 
and facilitating proactive decision-making to effectively manage the risks associated with 
each business line.   

Prior to joining Constellation Energy, Ms. Boultwood most recently served as global 
head of strategy, Alternative Investment Services for J.P. Morgan Chase & Company, where 
she was responsible for developing strategy for the company’s Hedge Fund Services, Private 
Equity Fund Services, Leveraged Loan Services and Global Derivative Services business 
lines.  During her tenure at J.P. Morgan Chase, she also served as global head, strategic risk 
management for its Treasury Services group and as global business head, Global Derivative 
Services of its Alternative  Investment Services group.  Ms. Boultwood joined J.P. Morgan 
Chase when it acquired Bank One Corporation in 2003.  Prior to the merger, she held risk 
management positions with Bank One Corporation, having served as head, corporate market 
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risk management and head, corporate operational risk management and then advancing to 
head, global risk management for its Global Treasury Services group.  
 
Ms. Boultwood also worked with PricewaterhouseCoopers as a senior manager in its 
Financial Risk Management Consulting Practice and was employed with Chemical Bank 
Corporation as a financial engineering associate.  In addition, she spent six years teaching in 
the University of Maryland’s Master of Business Administration program. 
 
Ms. Boultwood graduated with honors from the University of South Carolina with a 
bachelor’s degree in international relations.  She also earned a Ph.D. in economics from the 
City University of New York.   
 
            
John Breyault 
Vice President, Telecommunications and Fraud Public Policy 
National Consumers League 

 
 
 
 
 
 
 
 

   Mr. Breyault joined the National Consumers League in 
September 2008.  Mr. Breyault’s focus at NCL is on advocating for stronger consumer 
protections before Congress and federal agencies on issues related to telecommunications, 
fraud, technology, and other consumer concerns.  In addition, Mr. Breyault manages NCL’s 
Fraud Center and coordinates the Alliance Against Fraud coalition.  Mr. Breyault is also 
Research Director for the Telecommunications Research and Action Center (TRAC), a 
project of NCL.  In his role with TRAC, Mr. Breyault advocates on behalf of residential 
consumers of wireline, wireless, VoIP, and other IP-enabled communications services. 
 
Prior to coming to NCL, Mr. Breyault spent five years as director of research at Amplify 
Public Affairs, where he helped launch the firm’s Web 2.0-based public affairs practice and 
focused on producing actionable public policy research.  Earlier in his career, Mr. Breyault 
worked at Sprint in its International Carrier Services Division and at the American Center 
for Polish Culture in Washington, DC. 
 
Mr. Breyault was a member of the FCC’s Consumer Advisory Committee from 2005 to 2007 
and served on the Board of the Arlington-Alexandria Coalition for the Homeless.  He is a 
graduate of George Mason University, where he received a bachelor’s degree in International 
Relations. 
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Dr. Peter Carr 
Global Head of Market Modeling 
MorganStanley 

  Dr. Carr is a Managing Director at Morgan Stanley in New 
York.  He is also the Executive Director of the Masters in Math Finance program at NYU’s 
Courant Institute.  Prior to his current positions, Dr. Carr headed quantitative research 
groups at Bloomberg LP and at Banc of America Securities.  His prior academic positions 
include 4 years as an adjunct professor at Columbia University and 8 years as a finance 
professor at Cornell University.  Dr. Carr is currently the treasurer of the Bachelier Finance 
Society and an associate editor for 8 journals related to mathematical finance and derivatives.  
He is also credited with numerous contributions to quantitative finance including:  co-
inventing the variance gamma model, inventing static and semi-static hedging of exotic 
options, and popularizing variance swaps and corridor variance swaps.  Dr. Carr received his 
Ph.D. in Finance from UCLA.  
 
            
Michael Cosgrove 
Managing Director-Head of Commodities & Energy Brokerage, North America 
GFI Group 
 

   Mr. Cosgrove started his career with Amerex Oil 
Associates in 1981 as a broker of international crude oil.  In 1986, Mr. Cosgrove became a 
partner and Managing Director of Amerex’s European operations.  During the next 20 years 
Mr. Cosgrove expanded Amerex’s business globally until; in 2006 it comprised 250 
employees serving a broad range of international energy and petroleum markets from 
offices.  In 2006 Mr. Cosgrove joined GFI in connection with GFI’s purchase of the 
Amerex North American businesses.  In the following year the Amerex U.K. and European 
businesses were sold in a management buyout and subsequently acquired by Tullet Prebon.  
In 2004, Mr. Cosgrove was named in the Energy Risk Hall of Fame.  Mr. Cosgrove became 
Managing Director and Head of Commodities & Energy Brokerage for GFI in July 2008 and 
is responsible for all of GFI’s commodities & energy business in North America, including 
its Amerex and StarSupply divisions. 
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Gary A. DeWaal 
Senior Managing Director and General Counsel 
Newedge USA, LLC 

   Mr. DeWaal is a Senior Managing Director and the 
General Counsel of Newedge, as well as a member of Newedge’s governing Executive 
Committee.  Newedge was created on 2 January 2008 from the merger of the Fimat and 
Calyon Financial Groups (Newedge refers to Newedge Group and all its branches and 
worldwide subsidiaries.  Newedge Group is jointly owned by Société Générale and Calyon).  
Newedge’s worldwide Legal, Compliance and Financial Crimes Prevention (including AML) 
departments report to Mr. Dewaal. 
 
Mr. Dewaal joined Fimat in March 1995 from Brody White & Company where he served, at 
various times, as President, General Counsel, Head of Operations and Head of Internal 
Audit since 1986.  Previously Mr. Dewaal worked for the U.S. Commodity Futures Trading 
Commission’s Division of Enforcement in NYC, and Mudge Rose Guthrie & Alexander, a 
Wall Street corporate law firm whose principal partner was once Richard Nixon. 
 
Mr. Dewaal also taught a course entitled “Trading Derivatives: Practice and Law” for most 
years from 1996 through 2006, and has also recently been an annual guest lecturer for the 
International Finance and Law program in New York City of the State University of New 
York at Buffalo School of Law. 
 
Mr. Dewaal graduated in 1980 with JD and MBA degrees from the SUNY Buffalo and in 
1976 from the State University of New York at Stony Brook where he received a BA degree 
in English and economics; was elected to Phi Beta Kappa and Omicron Delta Epsilon 
(international economics honors society); and co-received awards as the University’s top 
overall graduating senior and junior. 
 
Mr. Dewaal has published numerous articles on futures and securities industry issues, and 
frequently lectures or appears as a speaker at futures and securities industry conferences or in 
training sessions for regulators. His most recent articles are “Time to Clean up after the 
Party” (The Financial Times, October 14, 2008), “America’s Financial Regulation Needs an 
Overhaul (The Financial Times, October 31, 2007), “Chicago’s Merger Has to Protect the 
Users’ Interest,” (The Financial Times, November 15, 2006), “Streamlining Regulation” (The 
Washington Times, August 2, 2005) and “America Must Create a Single Financial Regulator 
(The Financial Times, May 19, 2005). He most recently participated as a panelist or speaker 
on the following panels: Moderator: “Soup to Nuts: General Futures Overview,” Futures 
Industry Association, Annual Law and Compliance Conference (May 2009); Panelist: “Crisis 
Management: What Happens When Global Firms Fail,” International Regulators 
Symposium and Training Conference, Commodity Futures Trading Commission (March 
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2009); Moderator: “How Have Current Market Conditions Impact Opportunities in Asia,” 
Futures Industry Association, Annual Futures Industry Conference (March 2009); 
Moderator: “Lessons Learned from the Fall (2008) that Was,” Annual International 
Regulators Symposium and Training Conference, Commodity Futures Trading Commission 
(October 2008); Lecturer: “Observations on Kerviel: A Broker’s Perspective,” Australian 
Securities and Investment Commission (September 2008); Panelist: “Managing Risk in 
Volatile Markets, Financial Industry Regulatory Authority (September 2008); Moderator: 
“International Transactions” and panelist “Internal Controls post Kerviel:” Futures Industry 
Association, Annual Futures Industry Conference (March 2008); Panelist: “Introduction to 
Futures Regulation,” New York City Bar Association Continuing Legal Education Program 
(December 2007); “Crisis Response,” Annual International Regulators Symposium and 
Training Conference, Commodity Futures Trading Commission (October 2007); and 
Moderator: “Asian Regulatory Issues,” Taiwan Financial Securities Commission (October 
2007) and FIA Asia Conference (October 2007). 
 
Mr. Dewaal lives in Brooklyn, New York with his wife, Myrna Chao, and two daughters, 
Justi and Nyasia. In his spare time, Mr. Dewaal is an avid photographer, and bicycles and 
cooks for fun. 
 
            
Donald F. Donahue 
President and Chief Executive Officer 
The Depository Trust & Clearing Corporation 
 

   Mr. Donahue is Chairman and Chief Executive Officer for 
The Depository Trust & Clearing Corporation and for three of DTCC’s operating 
subsidiaries, The Depository Trust Company, Fixed Income Clearing Corporation and 
National Securities Clearing Corporation.  He took this position in 2007, following on one 
year as President and Chief Executive Officer for DTCC, DTC, FICC and NSCC, and three 
years as Chief Operating Officer for DTCC and as President and Chief Operating Officer 
for DTC and NSCC. 
 
Mr. Donahue has been with DTCC and its predecessor organizations since 1986.  During his 
time at DTCC Mr. Donahue has held positions in a variety of areas, serving as head of the 
depository’s Operations Division from 1995 until 1997, as the depository’s Chief 
Information Officer from 1997 until 2000, and as head of DTCC’s Customer Marketing and 
Development Division, with responsibility for strategic planning, product development, IT 
applications development, and technology infrastructure support and telecommunications, 
from 2000 to 2003. 
 
Prior to joining the depository, Mr. Donahue worked for five years for Barr Brothers & Co., 
Inc., a broker/dealer specializing in municipal securities.  He worked for the Municipal 
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Securities Rulemaking Board, the self-regulatory organization governing the U. S. municipal 
securities markets, from 1977 to 1985, first as Assistant Executive Director and then as 
Deputy Executive Director.  From 1985 to 1986 he was President of two affiliated 
companies that developed and marketed secondary market credit enhancements for 
municipal securities. 
 
From May 2004 to June 2006, Mr. Donahue served, under an appointment by Secretary John 
W. Snow of the United States Department of the Treasury, as Sector Coordinator for the 
U.S. Banking and Finance Sector in connection with the Treasury Department’s 
responsibilities as lead agency for the Sector under Homeland Security Presidential Directive 
7.  In that capacity Mr. Donahue served as Chairman of the Financial Services Sector 
Coordinating Council for Critical Infrastructure Protection and Homeland Security, a private 
sector group that interacts with the Treasury Department and Federal and State regulators 
on infrastructure protection and homeland security issues.  From April 2005 to April 2006, 
Mr. Donahue also served as Chairman of the Partnership for Critical Infrastructure Security, 
Inc., an organization of all of the Sector Coordinators appointed under HSPD-7 that works 
with the U.S. Department of Homeland Security on critical infrastructure protection matters. 
 
Mr. Donahue has participated in a variety of financial services industry committees and task 
forces. He currently serves on the Board of Directors of the United Way of New York City, 
and on the Board of Directors of XBRL US, the nonprofit consortium for XML business 
reporting standards in the U.S. financial markets. 
 
Mr. Donahue has a B.A. degree in History from Columbia University. 
 
            
Bryan T. Durkin 
Chief Operating Officer and Managing Director, Products & Services 
CME Group Inc. 

   Mr. Durkin has served as Chief Operating Officer and 
Managing Director, Products & Services of CME Group since February 2010.  He is 
responsible for the company’s Products & Services, Global Operations, Technology and 
Enterprise Computing, and Enterprise Solutions Divisions.  Previously, he served as 
Managing Director and Chief Operating Officer since July 2007.  He also led the global 
integrations following CME’s merger with the Chicago Board of Trade (CBOT) in 2007 and 
CME Group’s acquisition of the New York Mercantile Exchange (NYMEX) in 2008.  He is 
a member of the COMEX Governors Committee and a Director of the CME Foundation.  
Before joining CME Group, Durkin served as Executive Vice President and Chief Operating 
Officer of the Chicago Board of Trade (CBOT).  Prior to that role, he was in charge of the 
CBOT’s Office of Investigations and Audits where he oversaw the audits, financial 
surveillance, trade practice and market surveillance self-regulatory and enforcement divisions 
for the exchange.  His career with both CME Group and CBOT spans more than 25 years.  
Durkin holds a bachelor’s degree in business administration and an MBA from Lewis 
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University.  He has been an adjunct faculty member of Lewis University’s MBA program, 
teaching courses in organizational behavior and management. 
 
            
Richard B. Gorelick 
Chief Executive Officer 
RGM Advisors, LLC 

   Mr. Gorelick is the Chief Executive Officer of RGM 
Advisors, LLC, an automated trading firm that he co-founded in 2001.  The company 
applies scientific approaches and computing power to automated trading strategies in 
multiple asset classes around the world.  The company is headquartered in Austin, Texas, 
and, through a subsidiary, maintains a London office.  
  
Prior to founding RGM, Mr. Gorelick was the Chief Strategy Officer of Deja.com, Inc., 
which he joined in 1999, as the company's General Counsel.  Prior to Deja, Mr. Gorelick 
was a corporate attorney in Coudert Brothers' New York office.   
 
Mr. Gorelick received a B.A. in international relations from the University of Pennsylvania 
and a J.D. from the Georgetown University Law Center. 
 
            
Dr. Michael Gorham 
Industry Professor of Finance and Director 
IIT Center for Financial Markets 
Illinois Institute of Technology 

  IIT Industry Professor Michael Gorham served for more 
than three decades as a research economist at the Federal Reserve Bank of San Francisco.  
Additionally, Prof. Gorham served as vice president of product development, commodity 
marketing, education and international marketing spanning 18 years at the Chicago 
Mercantile Exchange.  He also has academic and research experience at IIT’s Center for Law 
and Financial Markets, has been editor of the Journal of Global Financial Markets and 
provides consulting services to international exchanges and regulators.  Most recently, Prof. 
Gorham served as the first director of the Division of Market Oversight for the Commodity 
Futures Trading Commission.  
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Simon Grensted 
Managing Director, Business Development 
LCH.Clearnet 

   Mr. Grensted is Managing Director, Business 
Development.  He joined the company in 1997 to design OTC Clearing services.  The first 
of these was the OTC interest rate SwapClear service.  Since going live in 1999 the service 
has grown to include, as users, the majority of the global interbank market makers. 
  
The team has gone on to develop OTC services in repo and bonds, energy, freight and 
equity derivatives.  More recently, he has been involved in developing clearing services for 
Nodal Exchange, the new US power market as well as the newly formed Hong Kong 
Mercantile Exchange (HKMEx).    
  
Prior to joining LCH.Clearnet, Mr. Grensted was Director of IT and Operations at 
EuroBrokers, one of London’s largest brokers in emerging markets, money markets and 
derivative instruments. 
  
Previously, for eleven years from 1982, Mr. Grensted was Managing Director of a software 
and systems vendor designing and implementing financial systems for banks, analytical 
products for information vendors and image processing systems for space and defence.  
During this time he was responsible for the development of a number of market leading 
products. He has also worked for Reuters and Datastream during his career in financial 
systems and product design. 
  
Mr. Grensted has a BSc from University College London in Electrical and Electronic 
Engineering and has been a visiting lecturer at Leeds and Sheffield universities. 
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Jill L. Harlan 
Corporate Risk Manager 
Caterpillar, Inc.  

   Ms. Harlan is currently the Corporate Risk Manager 
responsible for managing the risk associated with Caterpillar Inc.’s foreign exchange 
exposures related to the Machine & Engine business.   
 
Ms. Harlan joined Caterpillar as a Finance Analyst in 1988.  She is a graduate of 
Western Illinois University with a Bachelors of Business degree in Finance.  She has 
had a diverse career with assignments focused on both core treasury operations and 
in marketing business units.  Prior to her current position, she served as a Region 
Finance Manager for North American Commercial Division, Enterprise Risk 
Manager in Corporate Auditing, Treasurer for Asia Pacific Division, Finance Services 
Manager for Caterpillar of Australia and Foreign Exchange Administrator for 
Caterpillar EAME in Geneva.  Other assignments in Corporate Treasury include 
Human Resources Manager, Risk Administrator, Machine Orders Analyst and a 
variety of Finance Analyst positions. 
 
            
Douglas E. Harris 
Managing Director 
Promontory Financial Group, L.L.C.  

   Mr. Harris is a Managing Director in the New York office 
of Promontory Financial Group, L.L.C., a financial services consulting and advisory firm, 
where he advises clients in regulatory matters involving risk management, compliance, 
investment products, derivatives, capital markets and complex structured transactions, and 
on general corporate governance, internal controls, and strategic advisory matters.   
.   
Formerly, he was the General Counsel and Chief Operating Officer of BrokerTec Futures 
Exchange, L.L.C. and BrokerTec Clearing Company, L.L.C.  Before joining BrokerTec, Mr. 
Harris was a partner in the Regulatory Risk Services Group at Arthur Andersen LLP, where 
he advised commercial and investment banks, hedge funds and futures commission 
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merchants on regulatory, compliance, risk management, derivatives and capital markets 
issues. 
 
From 1993 to 1996, he held the position of Senior Deputy Comptroller for Capital Markets 
at the Office of the Comptroller of the Currency.  He was responsible for the regulation and 
supervision of national bank capital markets activities, including trading, dealing and 
investing in derivatives and emerging markets instruments, as well as the development of risk 
management policies and guidelines.  He also served on the Inter-Agency Task Force on 
Bank-Related Derivatives Activities and as senior staff member of the President’s Working 
Group on Financial Markets. 
 
Previously, Mr. Harris served as Assistant General Counsel of JPMorgan and General 
Counsel of JPMorgan Futures, Inc.   
 
Mr. Harris is a Director of the National Futures Association, the self-regulatory organization 
for the U.S. futures industry, where he is a member of both the Compliance Consultative 
Committee and the Audit Committee.  He is also a member of the Bar Association of the 
City of New York, the New York State Bar Association (Structured Products and 
Derivatives Law Committee), the American Bar Association (Committee on the Regulation 
of Futures and Derivatives), the Law & Compliance Division of the Futures Industry 
Association, and the Financial Markets Association. 
 
Mr. Harris received his AB from Harvard College and his JD from Harvard Law School. 
 
            
Christopher K. Hehmeyer  
Vice-Chairman of the Board  
National Futures Association 

   As CEO of HTG Capital Partners, Mr. Hehmeyer 
provides the strategic direction and leadership for HTG Capital Partners.  Having starter his 
career as a runner on the floor of the Chicago Board of Trade in 1978, Mr. Hehmeyer 
became a full member of the CBOT in 1981 where he was a floor broker, floor trader, 
member of the board of directors, and chaired, vice chaired or served on over 40 
committees at the exchange.  Most recently he was the CEO of Penson GHCO and 
continues to serve as its non-executive chairman. 
  
Mr. Hehmeyer was one of the founding partners of Goldenberg, Hehmeyer & Co and 
worked as a managing director of the Virginia Trading Corporation beginning in 1981 and 
prior to establishment of the GHCO partnership in 1984. 
  
In addition to his duties as CEO, Mr. Hehmeyer serves as vice chairman of the board of 
directors of the National Futures Association and as vice chairman of the board of the 
Futures Industry Association. 
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He is a member of the advisory board for the Master of Science of Financial Engineering 
Program at Kent State University, the Economics Club of Chicago, and the World 
Presidents' Organization.  
  
Mr. Hehmeyer has served on a variety of local charity boards including chairman of the 
exchange chapter of Ducks Unlimited and chairman of the annual LaSalle Street Dinner 
Dance for the Chicago Area Council of the Boy Scouts of America. 
 
            
Steven A. Joachim 
Executive Vice President of Transparency Services  
Financial Industry Regulatory Authority (FINRA) 

   Mr. Joachim is the Executive Vice President of 
Transparency Services at FINRA.  His responsibilities include the Alternative Display 
Facility, FINRA’s listed equity quote and trade reporting vehicle; the Trade Reporting 
Facilities, FINRA’s joint ventures with Exchanges for printing listed equity trades; and the 
Over The Counter Equity transparency facilities, including OTC Bulletin Board and 
TRACE, the FINRA facility for reporting corporate bond trades.   
 
Prior to his arrival at FINRA in 2002, Mr. Joachim was the Senior Vice President, Chief 
Operating Officer, Chief Strategy Officer and General Manager for Plural from 1997 to 
2001.  Plural was a custom interactive software development and strategy firm and is now 
owned by Dell Professional Services.  In 1983, he began a nearly 15-year stint with Merrill 
Lynch.  During his career at Merrill Lynch he served as head of Institutional Marketing, First 
Vice President, Business Architect for Capital Markets and Chief Technology Officer for 
Global Equity Markets, Director, Floor Brokerage Services and Business Manager, Global 
Equity Trading. Throughout his career at Merrill, he has managed operations in Asia, 
Europe and the U.S.  From 1981 to 1983, Mr. Joachim worked for Bankers Trust Company 
as Vice President, Area Consultant for Lending and Money Transfer Operations.  He also 
served as a Managing Consultant with Cresap McCormick and Paget, Inc.  
 
Mr. Joachim is the current Chairman of the International Forum for Investor Education and 
has served as a member of the Philadelphia Stock Exchange Board of Governors, Board of 
Directors for Merrill Lynch Specialists, Inc. and Board of Directors for Wilco, Inc.  He has 
also been a member of the Nasdaq Industry Advisory Committee and the American Stock 
Exchange Upstairs Member Advisory Committee. 
 
Mr. Joachim has an MA in Political Science from Duquesne University in Pittsburgh, PA, 
and an MS with distinction in Public Management and a BS in Mathematics from Carnegie 
Mellon University in Pittsburgh, PA. 
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Peter G. Johnson 
Managing Director of Futures & Options 
J.P. Morgan 
 
Mr. Johnson is the Managing Director and Global Co-Head of Futures and Options and 
OTC Clearing for J.P. Morgan Futures Inc.  In March 2010, Mr. Johnson was elected 
treasurer of the Futures Industry Association (FIA).  Mr. Johnson also serves as Chairman of 
the FIA Market Access Working Group. 
 
            
Dr. Albert S. Kyle 
Charles E. Smith Chair Professor of Finance  
University of Maryland 

  Professor Kyle joined the University of Maryland faculty 
as the Charles E. Smith Chair Professor of Finance at the Robert H. Smith School of 
Business in August 2006.  He earned his B.S. degree in mathematics from Davidson College 
in 1974, studied philosophy and economics at Oxford University as a Rhodes Scholar from 
Texas (1974), and completed his Ph.D. in economics at the University of Chicago in 1981.  
He has been a professor at Princeton University’s Woodrow Wilson School (1981-1987), at 
the University of California’s Haas Business School in Berkeley (1987-1992), and at Duke 
University (1992-2006).   
 
Professor Kyle’s research focuses on market microstructure.  His research includes topics 
such as informed speculative trading, market manipulation, price volatility, and the 
information content of market prices, market liquidity, and contagion.  His current research 
also deals with concepts from industrial organization to model the valuation dynamics of 
growth stocks and value stocks by applying techniques used to value real options.   
 
His teaching interests include market microstructure, institutional asset management, venture 
capital and private equity, corporate finance, option pricing, and asset pricing.   
 
He was elected Fellow of the Econometric Society in 2002.  He was a board member of the 
American Finance Association from 2004-2006.  He served as a staff member of the 
Presidential Task Force on Market Mechanisms (Brady Commission), after the stock market 
crash of 1987.  He has been a member of the NASDAQ economic advisory board and the 
FINRA economic advisory board. 
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Garry N. O'Connor 
Chief Executive Officer 
International Derivatives Clearing Group, LLC 

   Mr. O'Connor is the Chief Executive Officer of IDCG.  
Prior to joining IDCG, Mr. O'Connor spent seventeen years in the Investment Banking 
industry, pricing and managing interest rate derivative portfolios.  He has held senior 
positions in Sydney, Tokyo, Hong Kong and New York with Bankers Trust and then Merrill 
Lynch.  During his time at Merrill Lynch, Mr. O'Connor held a number of roles managing 
interest rate derivatives risk including leading the Australasian interest rate derivatives trading 
operation out of Sydney, leading the Japanese Yen swaps desk out of Tokyo, and 
establishing and managing a US Dollar interest rate trading business in Hong Kong. 
 
Most recently he was charged with establishing a North American presence in the European 
derivatives markets.  At Bankers Trust, Mr. O'Connor managed interest rate, foreign 
exchange, and commodities risk in Auckland and in Sydney.  He was also responsible for 
price making and risk management activities in Australian and New Zealand interest rate 
derivatives.  
 
As the CEO of IDCG, Mr. O'Connor has testified on Capitol Hill, met with government 
regulators and spoken at numerous industry forums on the need for central counterparty 
clearing and the benefits of extending clearing to all markets participants.  He previously 
served as IDCG's Chief Product Officer and remains responsible for designing and 
implementing IDCG's cleared interest rate derivative products.  He has used his experience 
as an interest rate trader to design IDCG's product specifications to be economically 
equivalent to over the counter market.  
 
Mr. O'Connor received a BCom (Hons) from Otago University in 1992.  
 
            
Michael Ricks 
Merchandising Manager, North America 
Cargill Inc. 
 
From 1999 to present, Mr. Ricks has been the Merchandising Manager, North America for 
Cargill Incorporated located in Minneapolis, MN.  Prior to that, from 1986-1999 Mr. Ricks 
was at Continental Grain dealing with grain merchandising.  Mr. Ricks received his MS 
Degree, Agricultural Economics, North Dakota State University, Fargo ND in 1986. 
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Matt Schatzman 
Senior Vice President, Energy Marketing 
BG Americas & Global LNG 

  Mr. Schatzman is responsible for marketing BG’s global 
LNG supply, BG’s gas, power and NGL products in North America and BG’s oil 
production in Brazil.  Prior to joining BG, Schatzman worked at Dynegy where his last 
position was president and chief executive officer of Dynegy’s energy marketing and power 
generation business.   
 
Mr. Schatzman holds a Bachelor of Arts degree in political science from Yale University. 
 
            
Thomas Secunda 
Chief Technology Officer 
Bloomberg LP 

   Mr. Secunda, one of the founding partners of Bloomberg, 
has been with the company since its creation in 1982.  Since Bloomberg’s inception, Mr. 
Secunda has served as Director of Research and Development, Director of Worldwide Sales 
and now Director of Financial Products which includes core terminals, trading systems, 
tradebook, and portfolio, analytics and risk. 
 
Prior to joining Bloomberg, Mr. Secunda was a fixed-income trader at Morgan Stanley from 
1981-1982.  Before that he worked in systems research at Salomon Brothers. 
 
Mr. Secunda holds both undergraduate and graduate degrees in mathematics from SUNY 
Binghamton.  He is currently on the Board of Directors of Bloomberg, the National Parks 
Conservation Association both its national board and it’s NYC Council, The Nature 
Conservancy, the Intrepid Museum Foundation and the Westchester County Parks, 
Recreation and Conservation Board. 
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Charles A. Vice 
President and Chief Operating Officer 
IntercontinentalExchange 

           Mr. Vice is a founding member of IntercontinentalExchange 
(NYSE: ICE).  He has served as Chief Operating Officer since July 2001 and President since 
October 2005.  Mr. Vice works with the executive management team in setting corporate 
objectives and strategies and has day-to-day responsibility for technology, operations, and 
product development.  Mr. Vice has been a leader in the management and application of 
information technology in the energy industry for nearly two decades.  Prior to the 
formation of ICE in 2000, Mr. Vice was a Director at Continental Power Exchange (CPEX), 
an electronic spot market for electric power.  Before joining the CPEX startup in 1994, he 
was a Principal at Energy Management Associates, where he provided consulting services to 
the electric power and natural gas industries.  From 1985 to 1988, Mr. Vice was a Systems 
Analyst with Electronic Data Systems (General Motors) where he designed and marketed 
management information systems for auto, airline and financial service industry clients.  
 
Mr. Vice earned a Bachelor of Science degree in Mechanical Engineering from the University 
of Alabama and a Master of Business Administration from the Owen Graduate School of 
Management at Vanderbilt University. 
 
            
Dr. Matthew White 
Senior Economist 
ISO New England, Inc. 

   Dr. White is the Senior Economist at ISO New England.  
His responsibilities include market design and development for ISO New England’s $12 
billion suite of auction-based electricity markets. 
 
Prior to joining the ISO, Dr. White held faculty appointments at the Stanford University 
Graduate School of Business, the University of Chicago (Visiting), and the University of 
Pennsylvania’s Wharton School of Business.  There he received numerous outstanding 
teaching awards for his lectures on how markets work.  Dr. White’s public service includes 
appointments as a senior staff economist to the U.S Federal Trade Commission and the U.S. 
Federal Energy Regulatory Commission.  
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Dr. White was a Faculty Research Fellow for twelve years at the National Bureau of 
Economic Research, the nation’s premier economic think tank.  Dr. White’s expertise 
centers on energy markets and electricity market design, including market microstructure, 
pricing practices, and demand behavior.  His research studies appear in leading academic 
journals, including the Review of Economic Studies, the RAND Journal of Economics, the Review of 
Economics and Statistics, and the Brookings Papers on Economic Activity.  He has served as an 
evaluator and referee for more than 25 peer-reviewed scholarly journals spanning 
economics, engineering, and political science.  He received his Ph.D. in Economics from the 
University of California, Berkeley in 1995. 
 
            
Charles F. Whitman 
Chief Executive Officer 
Infinium Capital Management 

   Mr. Whitman is a founding partner and Chief Executive 
Officer of Infinium Capital Management, a proprietary trading firm based in Chicago with 
additional operations in New York and London.   
 
Mr. Whitman has been involved in the trading industry since 1987 when, at the young age of 
17, he was a runner for Produce Grain Inc.  From 1987 to 1992 he attended DePaul 
University where he double majored in Accounting and Finance.  While at DePaul, in 1988 
he became a clerk in the soybean options pit for Hanley Group.  Mr. Whitman then 
successfully traded full time in the soybean options pit for several years and in 1996 became 
a partner at Hanley Group.  Starting in 1994, while still trading full time and anticipating the 
rise in electronic trading, Mr. Whitman focused on developing methods of trading away 
from the exchange floor.  From 1999-2001 Mr. Whitman conducted in depth market and 
business research for what would become Infinium Capital Management.  During this 
research period, Mr. Whitman also taught options seminars for Dr. Van Tharp and 
mentored and trained several traders that went on to become extremely successful.  In June 
of 2000 Mr. Whitman became a partner at Blink Trading, LLC, which was sold to GETCO 
in 2002.  Since the launch of Infinium 9 years ago, Mr. Whitman has served the firm 
simultaneously as CEO and Head of Macro Trading.  Infinium is widely recognized for its 
integrity and multi asset class presence, is an established leader in working with exchanges to 
develop new products and in 2008 was voted the 4th best place to work in Chicago by 
Crain’s Chicago Business. 
 
Mr. Whitman has been designated a “Super Trader” by Dr. Van Tharp who was featured as 
the premier psychologist in the trading arena in the book Market Wizards.  Mr. Whitman 
authored the foreword in the current edition of Dr. Tharp’s book Trade Your Way to 
Financial Freedom.  Charles Whitman is a longtime member of Chicago Mercantile 
Exchange, Chicago Board of Options Exchange, Kansas City Board of Trade and 
Minneapolis Grain Exchange.  Furthermore, he is a member of the Economic Club of 
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Chicago, the Cato Institute and the Chairman’s Circle of the Chicago Council on Global 
Affairs.  Mr. Whitman was highly influential in the development of a charitable inner-city 
ministry, GRIP Outreach for Youth, where he also served as Chairman of the Board.  He is 
devoted to helping at-risk children and has mentored many middle school and high school 
kids through coaching basketball, one of his lifelong passions.  Mr. Whitman is a substantial 
donor and supporter of several charities including Willow Creek Association, Robin Hood 
Foundation, Christian Heritage Academy, Caris Pregnancy Centers, World Vision and Direct 
Relief International.   
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Background	
  
This	
  document	
  is	
  divided	
  into	
  2	
  sections:	
  firstly	
  it	
  reviews	
  the	
  drivers	
  and	
  trends	
  in	
  
Algo	
  and	
  HFT;	
  secondly	
  it	
  discusses	
  the	
  topic	
  of	
  regulation	
  with	
  specific	
  regard	
  to	
  
the	
  CFTC,	
  Algo	
  and	
  HFT.	
  I’ve	
  been	
  very	
  fortune,	
  as	
  the	
  Founder	
  of	
  Apama	
  (one	
  of	
  the	
  
leading	
  platforms	
  for	
  Algo	
  and	
  HFT,	
  liquidity	
  aggregation,	
  smart	
  order	
  routing,	
  pre-­‐
trade	
  risk	
  and	
  market	
  surveillance)	
  to	
  be	
  involved	
  in	
  working	
  for	
  the	
  last	
  10	
  years	
  
with	
  leading	
  sell-­‐side	
  and	
  buy-­‐side	
  firms,	
  trading	
  venues	
  and,	
  more	
  recently,	
  
regulators.	
  I’ve	
  seen	
  Algo	
  and	
  HFT	
  evolve	
  in	
  many	
  interesting	
  ways	
  and	
  I	
  wanted	
  to	
  
try	
  to	
  capture	
  some	
  of	
  the	
  trends,	
  which	
  also	
  motivate	
  my	
  views	
  of	
  the	
  regulatory	
  
requirements	
  going	
  forward.	
  	
  
	
  

Algorithmic	
  Trading	
  Terminology	
  
The	
  term	
  algorithmic	
  trading	
  is	
  not	
  used	
  consistently	
  in	
  the	
  industry	
  (sometimes	
  it	
  
is	
  used	
  generally	
  and	
  sometimes	
  to	
  describe	
  execution-­‐only	
  strategies	
  or	
  broker	
  
algorithms	
  –	
  see	
  below).	
  An	
  algorithm	
  is	
  “a	
  sequence	
  of	
  steps	
  to	
  achieve	
  a	
  goal”	
  –	
  
and	
  the	
  general	
  case	
  of	
  algorithmic	
  trading	
  is	
  “using	
  a	
  computer	
  to	
  automate	
  a	
  
trading	
  strategy”.	
  In	
  almost	
  all	
  cases,	
  algorithms	
  encode	
  what	
  traders	
  could	
  do	
  by	
  
watching	
  the	
  market	
  and	
  manually	
  placing	
  orders.	
  The	
  difference	
  is	
  that	
  algos	
  don’t	
  
need	
  a	
  lunch	
  break	
  or	
  a	
  paycheck!	
  It	
  takes	
  tens	
  of	
  milliseconds	
  for	
  a	
  trader’s	
  eye	
  to	
  
take	
  in	
  information,	
  communicate	
  with	
  the	
  brain,	
  a	
  decision	
  to	
  be	
  made	
  and	
  the	
  
brain	
  impulse	
  to	
  go	
  from	
  a	
  trader’s	
  brain	
  to	
  operate	
  his/her	
  fingers	
  to	
  trade.	
  In	
  that	
  
time	
  algorithms	
  can	
  have	
  made	
  and	
  executed	
  thousands	
  of	
  trading	
  decisions.	
  
	
  
There	
  are	
  2	
  main	
  ways	
  in	
  which	
  algorithms	
  are	
  used	
  to	
  automate	
  trading:	
  
algorithms	
  for	
  execution	
  and	
  algorithms	
  for	
  HFT.	
  	
  
	
  

Execution	
  Algorithms	
  
Execution	
  algorithms	
  are	
  used	
  to	
  break	
  down	
  large	
  orders	
  and	
  slice	
  them	
  into	
  the	
  
market	
  over	
  a	
  period	
  of	
  time.	
  The	
  goal	
  is	
  to	
  minimize	
  the	
  impact	
  that	
  a	
  large	
  order	
  
has	
  in	
  the	
  market	
  and	
  to	
  achieve	
  a	
  benchmarked	
  price.	
  Examples	
  of	
  this	
  include	
  the	
  
VWAP	
  (Volume	
  Weighted	
  Average	
  Price)	
  and	
  Market	
  Participation	
  algos.	
  These	
  
algorithms	
  use	
  metrics	
  to	
  determine	
  how	
  to	
  slice	
  a	
  large	
  order;	
  for	
  example,	
  VWAP	
  
uses	
  the	
  historic	
  volume	
  distribution	
  for	
  a	
  particular	
  symbol	
  over	
  the	
  course	
  of	
  a	
  
day	
  and	
  divides	
  the	
  order	
  into	
  slices,	
  proportioned	
  to	
  this	
  distribution.	
  



	
  
The	
  typical	
  use	
  of	
  an	
  execution	
  algorithm	
  is	
  the	
  buyside	
  sending	
  an	
  order	
  to	
  be	
  
executed	
  algorithmically	
  into	
  a	
  broker.	
  This	
  can	
  be	
  done	
  either	
  by	
  phone	
  or	
  in	
  an	
  
automatic	
  way	
  from	
  a	
  buyside	
  Execution	
  Management	
  System	
  (EMS)	
  as	
  a	
  FIX	
  order.	
  
The	
  buyside	
  provides	
  all	
  the	
  information,	
  such	
  as	
  instrument,	
  side,	
  quantity	
  and	
  the	
  
algorithm	
  to	
  use.	
  An	
  instance	
  of	
  the	
  execution	
  algorithm	
  is	
  then	
  instantiated	
  within	
  
the	
  broker	
  environment	
  to	
  trade	
  the	
  order.	
  It	
  is	
  also	
  possible	
  to	
  run	
  these	
  algorithms	
  
within	
  the	
  buyside	
  and	
  just	
  send	
  the	
  child	
  orders	
  straight	
  to	
  the	
  market	
  through	
  
DMA	
  (direct	
  market	
  access).	
  To	
  achieve	
  this	
  some	
  EMS	
  systems	
  have	
  built-­‐in	
  
algorithms	
  and	
  some	
  institutions	
  have	
  built	
  their	
  own	
  algorithms	
  using	
  technologies	
  
such	
  as	
  Complex	
  Event	
  Processing	
  (CEP	
  (described	
  later)).	
  
	
  

High	
  Frequency	
  Trading	
  Algorithms	
  
While	
  execution	
  algorithms	
  are	
  about	
  automating	
  “how	
  to	
  trade”	
  –	
  i.e.	
  how	
  to	
  place	
  
orders	
  in	
  the	
  market,	
  HFT	
  algorithms	
  add	
  to	
  this	
  “when	
  to	
  trade”	
  and	
  even	
  
sometimes	
  “what	
  to	
  trade”.	
  	
  Execution	
  algorithms	
  are	
  about	
  minimizing	
  market	
  
impact	
  and	
  trying	
  to	
  ensure	
  a	
  fair	
  price,	
  whereas	
  HFT	
  algorithms	
  are	
  about	
  profit.	
  
The	
  “high	
  frequency”	
  refers	
  to	
  being	
  able	
  to	
  keep	
  up	
  with	
  the	
  high	
  frequency	
  
streams	
  of	
  data,	
  make	
  decisions	
  based	
  on	
  patterns	
  in	
  that	
  data	
  indicating	
  possible	
  
trading	
  opportunities,	
  and	
  automatically	
  place	
  and	
  manage	
  orders	
  in	
  the	
  market	
  to	
  
capitalize.	
  	
  
	
  
A	
  term	
  commonly	
  associated	
  with	
  HFT	
  is	
  statistical	
  arbitrage	
  (or	
  “statarb”)	
  –	
  
monitoring	
  instruments	
  that	
  are	
  known	
  to	
  be	
  statistically	
  correlated,	
  with	
  the	
  goal	
  
of	
  detecting	
  breaks	
  in	
  the	
  correlation	
  -­‐	
  indicating	
  trading	
  opportunities.	
  For	
  
example,	
  consider	
  the	
  relationship	
  (called	
  the	
  delta	
  1:1)	
  between	
  a	
  bond,	
  such	
  as	
  the	
  
10-­‐year	
  govvie	
  on	
  ICAP	
  (Brokertec),	
  and	
  a	
  derivative	
  of	
  it	
  on	
  CBOT.	
  These	
  
instruments	
  tend	
  to	
  move	
  together	
  –	
  but	
  if	
  that	
  relationship	
  breaks	
  for	
  a	
  few	
  
milliseconds	
  then	
  there	
  is	
  an	
  opportunity	
  to	
  buy	
  one	
  and	
  sell	
  the	
  other	
  at	
  a	
  profit.	
  
There	
  are	
  a	
  variety	
  of	
  types	
  of	
  HFT	
  algorithms	
  for	
  statarb,	
  including	
  the	
  following:	
  
	
  
• Pairs	
  trading	
  -­‐	
  looking	
  for	
  breaks	
  in	
  the	
  correlated	
  relationships	
  between	
  pairs	
  of	
  

instruments.	
  
	
  
• Index	
  arbitrage	
  -­‐	
  monitoring	
  for	
  breaks	
  in	
  the	
  correlated	
  relationships	
  between	
  

instruments	
  and	
  the	
  index	
  of	
  its	
  sector,	
  e.g.	
  Ford	
  against	
  the	
  automotive	
  sector,	
  
or	
  a	
  stock	
  index	
  future	
  against	
  one	
  or	
  more	
  of	
  its	
  underlying	
  component	
  
elements.	
  

	
  
• Basket	
  trading	
  -­‐	
  in	
  which	
  statarb	
  techniques	
  are	
  applied	
  not	
  with	
  individual	
  

instruments	
  but	
  with	
  custom	
  baskets	
  of	
  instruments.	
  
	
  
• Spread	
  trading	
  -­‐	
  a	
  related	
  form	
  of	
  statarb	
  that	
  is	
  particularly	
  popular	
  in	
  the	
  

futures	
  market.	
  In	
  spread	
  trading,	
  trading	
  is	
  based	
  on	
  taking	
  positions,	
  usually	
  
one	
  long	
  and	
  one	
  short,	
  on	
  instruments	
  with	
  profitability	
  being	
  determined	
  by	
  



the	
  spread	
  (difference)	
  between	
  two.	
  Examples	
  include	
  the	
  purchase	
  of	
  July	
  Corn	
  
and	
  the	
  sale	
  of	
  December	
  Corn	
  (intra-­‐market	
  spread),	
  the	
  purchase	
  of	
  February	
  
Lean	
  Hogs	
  and	
  the	
  sale	
  of	
  February	
  Live	
  Cattle	
  (inter-­‐market	
  spread),	
  and	
  the	
  
purchase	
  of	
  March	
  Kansas	
  City	
  Wheat	
  and	
  the	
  sale	
  of	
  March	
  Chicago	
  Wheat	
  
(inter-­‐exchange	
  spread).	
  More	
  complex	
  inter-­‐exchange	
  multi-­‐legged	
  spreads	
  
include	
  crack	
  spreads:	
  trading	
  the	
  differential	
  between	
  the	
  price	
  of	
  crude	
  oil	
  and	
  
petroleum	
  products,	
  spark	
  spreads:	
  trading	
  the	
  theoretical	
  gross	
  margin	
  of	
  a	
  gas-­‐
fired	
  power	
  plant	
  from	
  selling	
  a	
  unit	
  of	
  electricity,	
  having	
  bought	
  the	
  fuel	
  
required	
  to	
  produce	
  this	
  unit	
  of	
  electricity	
  (and	
  including	
  all	
  other	
  costs	
  
operation	
  and	
  maintenance,	
  capital	
  and	
  other	
  financial	
  costs)	
  and	
  crush	
  spreads:	
  
involving	
  the	
  purchase	
  of	
  soybean	
  futures	
  and	
  the	
  sale	
  of	
  soybean	
  oil	
  and	
  
soybean	
  meal	
  futures.	
  

	
  
In	
  multi-­‐instrument	
  HFT	
  strategies,	
  low	
  latency	
  is	
  very	
  important	
  –	
  in	
  order	
  to	
  see	
  
the	
  patterns	
  in	
  the	
  market	
  and	
  execute	
  trades	
  before	
  competitors.	
  This	
  is	
  
particularly	
  relevant	
  in	
  placing	
  multiple	
  trades	
  as	
  part	
  of	
  a	
  statarb	
  scenario	
  –	
  a	
  so-­‐
called	
  multi-­legged	
  trade	
  –	
  where	
  each	
  trade	
  is	
  a	
  leg.	
  Firstly	
  it	
  is	
  important	
  to	
  act	
  on	
  
the	
  liquidity	
  opportunity	
  seen	
  in	
  the	
  market;	
  thus	
  fast	
  reaction	
  is	
  important	
  before	
  a	
  
competitor	
  takes	
  the	
  opportunity.	
  And	
  secondly,	
  it	
  is	
  important	
  not	
  to	
  get	
  “legged	
  
out”	
  –	
  where	
  one	
  leg	
  of	
  the	
  strategy	
  executes	
  but	
  other	
  legs	
  find	
  the	
  market	
  has	
  
moved	
  and	
  the	
  opportunity	
  is	
  lost.	
  There	
  are	
  of	
  course	
  mitigating	
  actions	
  that	
  can	
  be	
  
taken	
  here,	
  either	
  automatically	
  or	
  manually.	
  
	
  
HFT	
  algos	
  are	
  typically	
  used	
  in	
  bank	
  proprietary	
  trading	
  groups,	
  hedge	
  funds	
  and	
  
proprietary	
  trading	
  firms.	
  Instances	
  of	
  specific	
  trading	
  strategies	
  can	
  be	
  instantiated	
  
by	
  providing	
  key	
  parameters	
  -­‐	
  for	
  example:	
  a	
  new	
  pairs	
  trading	
  strategy	
  needs	
  to	
  
know	
  the	
  instruments	
  and	
  specific	
  trading	
  thresholds.	
  Once	
  initiated,	
  HFT	
  algos	
  
often	
  run	
  with	
  little	
  human	
  intervention.	
  Often	
  traders	
  monitor	
  the	
  status,	
  P&L	
  and	
  
other	
  key	
  parameters	
  on	
  real-­‐time	
  dashboards	
  and	
  can	
  intervene	
  when/if	
  they	
  feel	
  
it	
  is	
  necessary.	
  In	
  the	
  case	
  of	
  spread	
  trading,	
  specialized	
  tools	
  called	
  Spreaders	
  are	
  
often	
  used	
  by	
  traders	
  to	
  instantiate	
  and	
  manage	
  spread	
  trading.	
  
	
  
The	
  above	
  HFT	
  algo	
  types	
  are	
  a	
  subset	
  of	
  the	
  algos	
  in	
  the	
  market	
  but	
  illustrate	
  many	
  
of	
  the	
  principles.	
  A	
  selection	
  of	
  other	
  areas	
  in	
  which	
  high	
  frequency	
  algorithmic	
  
techniques	
  are	
  used	
  include	
  the	
  following:	
  
	
  
• Liquidity	
  aggregation	
  and	
  smart	
  order	
  routing	
  -­‐	
  As	
  market	
  fragmentation	
  has	
  

continued,	
  algorithmic	
  techniques	
  have	
  been	
  employed	
  to	
  aggregate	
  liquidity	
  
and	
  use	
  smart	
  order	
  routing	
  to	
  send	
  orders	
  to	
  the	
  venues	
  with	
  the	
  best	
  price	
  and	
  
liquidity.	
  These	
  techniques	
  (described	
  below	
  in	
  more	
  detail)	
  can	
  be	
  used	
  by	
  HFT	
  
algos	
  to	
  operate	
  more	
  effectively	
  in	
  a	
  fragmented	
  environment.	
  	
  

	
  
• Real-­‐time	
  pricing	
  of	
  instruments	
  -­‐	
  Algorithmic	
  techniques	
  have	
  also	
  been	
  used	
  in	
  

the	
  real-­‐time	
  pricing	
  of	
  instruments,	
  such	
  as	
  bonds,	
  options	
  and	
  foreign	
  
exchange.	
  Traditional	
  pricing	
  techniques	
  use	
  slower-­‐moving	
  pricing	
  analytics	
  



and	
  fundamentals	
  to	
  price	
  instruments.	
  However,	
  now	
  higher	
  frequency	
  
algorithmic	
  techniques	
  can	
  enhance	
  these	
  pricing	
  algorithms	
  based	
  on	
  what	
  is	
  
happening	
  in	
  the	
  aggregated	
  market	
  (i.e.	
  how	
  can	
  we	
  make	
  money	
  by	
  increasing	
  
the	
  spread	
  on	
  liquidity	
  available)	
  and	
  the	
  tier	
  and	
  history	
  of	
  the	
  customer	
  for	
  
whom	
  we	
  are	
  publishing	
  the	
  price	
  (i.e.	
  how	
  should	
  be	
  adjust	
  the	
  spread	
  based	
  on	
  
how	
  important	
  the	
  customer	
  is).	
  High	
  frequency	
  pricing	
  can	
  thus	
  skew	
  prices	
  
and	
  spreads	
  based	
  on	
  the	
  up-­‐to-­‐millisecond	
  view	
  from	
  the	
  market	
  and	
  the	
  tier	
  of	
  
the	
  customer.	
  

	
  
• Trading	
  on	
  news	
  -­‐	
  In	
  the	
  last	
  couple	
  of	
  years,	
  there	
  has	
  been	
  increasing	
  interest	
  

from	
  HFT	
  firms	
  in	
  incorporating	
  news	
  into	
  HFT	
  algos.	
  The	
  idea	
  here	
  is	
  that	
  firms	
  
can	
  trade	
  automatically	
  on	
  news	
  sentiment	
  before	
  a	
  human	
  trader	
  can	
  react,	
  e.g.	
  
economic	
  releases,	
  news	
  of	
  a	
  war,	
  unexpected	
  weather	
  events	
  etc.	
  They	
  can	
  also	
  
correlate	
  and	
  respond	
  to	
  patterns,	
  e.g.	
  the	
  way	
  that	
  news	
  impacts	
  price	
  
movements.	
  For	
  a	
  number	
  of	
  years	
  a	
  handful	
  of	
  highly	
  innovative	
  firms	
  have	
  
been	
  experimenting	
  with	
  news	
  in	
  HFT.	
  Now,	
  however,	
  this	
  interest	
  is	
  growing	
  
due	
  to	
  new	
  types	
  of	
  structured	
  high	
  frequency	
  news	
  feeds.	
  News	
  providers,	
  such	
  
as	
  Thomson-­‐Reuters	
  and	
  Dow-­‐Jones	
  are	
  including	
  tags	
  in	
  the	
  feeds	
  that	
  enable	
  
algos	
  to	
  quickly	
  extract	
  key	
  information,	
  such	
  as	
  data	
  associated	
  with	
  an	
  
economic	
  release.	
  

	
  
• Genetic	
  tuning	
  -­‐	
  Another	
  interesting	
  technique	
  is	
  genetic	
  tuning	
  –	
  in	
  which	
  many	
  

thousands	
  of	
  permutations	
  of	
  algorithms	
  are	
  run	
  in	
  parallel	
  and	
  fed	
  with	
  real	
  
market	
  data	
  but	
  are	
  not	
  necessarily	
  trading	
  live	
  in	
  the	
  market.	
  The	
  algorithms	
  
that	
  have	
  the	
  most	
  profitable	
  theoretical	
  P&L	
  can	
  be	
  put	
  into	
  the	
  market	
  to	
  trade	
  
live.	
  Over	
  time	
  live	
  algos	
  may	
  become	
  less	
  profitable	
  and	
  can	
  be	
  deactivated.	
  The	
  
branches	
  of	
  profitable	
  algorithms	
  can	
  be	
  grown	
  and	
  the	
  less	
  profitable	
  branches	
  
killed	
  off.	
  This	
  model	
  of	
  Darwinian	
  trading	
  allows	
  self-­‐evolving	
  systems	
  to	
  
discover	
  profitable	
  opportunities	
  through	
  evolutionary	
  processes,	
  with	
  some	
  
seeding	
  and	
  guidance	
  by	
  human	
  experts.	
  These	
  techniques	
  are	
  still	
  exploratory	
  
and	
  are	
  still	
  only	
  used	
  in	
  a	
  few	
  advanced	
  firms.	
  

	
  
The	
  Holy	
  Grail	
  of	
  Algo	
  and	
  HFT	
  is	
  the	
  “money	
  machine”	
  –	
  an	
  algorithm	
  that	
  figures	
  
out	
  what	
  to	
  trade	
  and	
  the	
  strategy	
  to	
  trade	
  it,	
  and	
  then	
  continuously	
  self-­‐evolves	
  to	
  
remain	
  profitable	
  and	
  outwit	
  competitors.	
  While	
  there	
  are	
  many	
  semi-­‐smart	
  
algorithms	
  out	
  there,	
  most	
  still	
  require	
  human	
  expertise	
  and	
  oversight.	
  We	
  are	
  not	
  
yet	
  at	
  the	
  stage	
  of	
  truly	
  intelligent	
  algorithms,	
  although	
  it	
  is	
  inevitable	
  this	
  is	
  where	
  
the	
  market	
  is	
  aiming	
  for	
  and	
  we	
  must	
  be	
  prepared	
  for	
  this.	
  
	
  

The	
  Latency	
  War	
  
In	
  all	
  forms	
  of	
  algo	
  trading	
  –	
  but	
  particularly	
  in	
  HFT,	
  minimizing	
  latency	
  is	
  a	
  key	
  
factor	
  in	
  success.	
  Specifically,	
  trading	
  groups	
  are	
  concerned	
  with	
  end-­to-­end	
  latency	
  
–	
  the	
  total	
  delay	
  from	
  the	
  market	
  data	
  being	
  generated	
  at	
  the	
  trading	
  venue(s),	
  
being	
  delivered	
  to	
  an	
  algo,	
  a	
  decision	
  being	
  taken	
  by	
  an	
  algo	
  and	
  the	
  necessary	
  
orders	
  being	
  placed	
  and	
  filled	
  in	
  the	
  venue(s).	
  When	
  several	
  firms	
  are	
  competing	
  for	
  



the	
  same	
  opportunity,	
  the	
  one	
  with	
  the	
  lowest	
  latency	
  wins.	
  There	
  is	
  a	
  lot	
  more	
  to	
  
Algo	
  and	
  HFT	
  than	
  just	
  latency	
  –	
  as	
  described	
  below	
  –	
  but	
  clearly	
  latency	
  is	
  very	
  
important.	
  There	
  are	
  several	
  components	
  in	
  the	
  low	
  latency	
  value	
  chain	
  including:	
  
	
  
• Market	
  data	
  –	
  traditionally	
  firms	
  like	
  Thomson-­‐Reuters	
  were	
  the	
  preferred	
  one-­‐

stop-­‐shop	
  way	
  of	
  delivering	
  market	
  data.	
  However,	
  market	
  data	
  intermediaries	
  
can	
  add	
  significant	
  latency	
  and	
  firms	
  focused	
  on	
  HFT	
  are	
  interested	
  in	
  
connecting	
  directly	
  to	
  the	
  trading	
  venues	
  through	
  their	
  market	
  data	
  APIs	
  
(Application	
  Programming	
  Interfaces).	
  Market	
  data	
  firms	
  have	
  responded	
  by	
  
creating	
  lower	
  latency	
  versions	
  of	
  their	
  products	
  and	
  new	
  vendors	
  have	
  
emerged	
  such	
  as	
  Wombat	
  (acquired	
  by	
  NYSE)	
  and	
  ActivFinancial.	
  
	
  

• Algo	
  &	
  HFT	
  Engine	
  –	
  the	
  traditional	
  approach	
  in	
  top	
  tier	
  firms	
  was	
  to	
  hire	
  the	
  top	
  
talent	
  and	
  hand-­‐build	
  algorithms	
  in-­‐house	
  using	
  a	
  traditional	
  programming	
  
language,	
  such	
  as	
  C++.	
  These	
  algorithms	
  would	
  be	
  tuned	
  to	
  minimize	
  latency	
  in	
  
response	
  to	
  patterns	
  in	
  market	
  data.	
  However,	
  with	
  the	
  requirement	
  for	
  quicker	
  
time-­‐to-­‐market	
  of	
  new	
  algorithms,	
  new	
  technologies,	
  such	
  as	
  Complex	
  Event	
  
Processing	
  (CEP)	
  –	
  which	
  combine	
  rapid	
  development	
  with	
  low	
  latency	
  response	
  
to	
  complex	
  patterns	
  in	
  market	
  data	
  have	
  become	
  popular.	
  

	
  
• Order	
  execution	
  –	
  In	
  recent	
  years,	
  many	
  trading	
  venues	
  have	
  adopted	
  the	
  FIX	
  

protocol	
  as	
  the	
  standard	
  way	
  to	
  place	
  orders.	
  In	
  order	
  to	
  minimize	
  latency	
  many	
  
institutions	
  connect	
  directly	
  to	
  the	
  venues	
  and	
  place	
  and	
  manage	
  order	
  over	
  FIX.	
  	
  

	
  
• Physical	
  connection	
  –	
  Some	
  firms	
  have	
  become	
  focused	
  on	
  the	
  physics	
  of	
  

reducing	
  latency	
  –	
  making	
  the	
  wire	
  connection	
  over	
  which	
  market	
  data	
  and	
  
orders	
  are	
  transmitted	
  as	
  short	
  as	
  possible.	
  There	
  are	
  a	
  number	
  of	
  suppliers,	
  
such	
  as	
  BT-­‐Radianz,	
  that	
  can	
  provide	
  a	
  dedicated	
  network	
  that	
  is	
  already	
  wired	
  
into	
  trading	
  venues	
  around	
  the	
  world.	
  

	
  
• Co-­‐location	
  –	
  At	
  the	
  extremes	
  of	
  reducing	
  the	
  latency	
  physics	
  is	
  co-­‐location,	
  in	
  

which	
  algorithms	
  are	
  actually	
  installed	
  next	
  to	
  or	
  in	
  the	
  facilities	
  of	
  a	
  trading	
  
venue.	
  Several	
  hosting	
  companies	
  have	
  built	
  businesses	
  around	
  providing	
  
hosting	
  platforms	
  to	
  allow	
  trading	
  firms	
  to	
  install	
  their	
  software	
  in	
  these	
  co-­lo	
  
facilities.	
  The	
  challenge	
  with	
  co-­‐lo	
  comes	
  for	
  firms	
  that	
  run	
  cross-­‐market,	
  cross-­‐
asset	
  or	
  cross-­‐border	
  algorithms	
  –	
  which	
  might	
  involve	
  trading	
  with	
  multiple	
  
trading	
  venues	
  that	
  are	
  not	
  geographically	
  co-­‐located.	
  Where	
  does	
  one	
  put	
  these	
  
algorithms?	
  Usually	
  at	
  a	
  location	
  with	
  fast	
  inter-­‐connect	
  to	
  all	
  the	
  necessary	
  
venues.	
  

	
  

Rapid	
  Alpha	
  Discovery,	
  Authoring	
  and	
  Customization	
  
In	
  general,	
  customization	
  of	
  algorithms	
  has	
  been	
  a	
  key	
  differentiator	
  to	
  both	
  brokers	
  
that	
  offer	
  execution	
  algorithms	
  and	
  to	
  HFT	
  shops.	
  The	
  principle	
  behind	
  this	
  is	
  that	
  if	
  
everyone	
  has	
  the	
  same	
  algorithms	
  then	
  there	
  is	
  no	
  competitive	
  advantage.	
  In	
  
practice	
  there	
  isn’t	
  a	
  tremendous	
  difference	
  between	
  different	
  broker’s	
  VWAP	
  



algorithms	
  or	
  different	
  prop	
  shop’s	
  pairs	
  trading	
  algorithm	
  –	
  but	
  each	
  firm	
  usually	
  
has	
  their	
  own	
  “secret	
  sauce”	
  that	
  makes	
  the	
  algorithm	
  slightly	
  different.	
  There	
  are	
  
also	
  obscure	
  algo	
  approaches	
  that	
  are	
  unique	
  to	
  individual	
  firms	
  and	
  are	
  closely	
  
guarded	
  secrets.	
  	
  
	
  
A	
  key	
  statistic	
  to	
  note,	
  from	
  research	
  by	
  the	
  analyst	
  firm	
  Aite	
  Group,	
  is	
  that	
  the	
  
average	
  lifespan	
  of	
  an	
  algorithm	
  is	
  3	
  months.	
  This	
  indicates	
  the	
  pace	
  of	
  change	
  in	
  the	
  
market.	
  In	
  fact,	
  during	
  the	
  highly	
  volatile	
  markets	
  of	
  late	
  2008,	
  some	
  firms	
  changed	
  
their	
  algorithms	
  on	
  a	
  daily	
  basis	
  –	
  to	
  anticipate	
  and	
  respond	
  to	
  daily	
  opportunities.	
  
	
  
In	
  addition	
  to	
  the	
  run-­‐time	
  concerns	
  around	
  minimizing	
  latency	
  (described	
  above)	
  
there	
  are	
  also	
  equally	
  important	
  concerns	
  around	
  rapid	
  research	
  and	
  development	
  
of	
  new	
  algorithms	
  and	
  customization	
  of	
  existing	
  algorithms.	
  The	
  reasons	
  for	
  this	
  are	
  
as	
  follows:	
  
	
  
• First-­‐mover	
  advantage	
  -­‐	
  The	
  markets	
  change	
  all	
  the	
  time	
  and	
  new	
  patterns	
  that	
  

offer	
  potential	
  to	
  build	
  algorithms	
  around	
  emerge.	
  It’s	
  key	
  to	
  be	
  able	
  to	
  build,	
  
test	
  and	
  deploy	
  a	
  new	
  algorithm	
  quickly	
  because	
  competitors	
  may	
  have	
  spotted	
  
the	
  same	
  opportunity	
  and	
  be	
  trying	
  to	
  trade	
  on	
  it	
  first.	
  

	
  
• Adapting	
  to	
  change	
  -­‐	
  Changes	
  in	
  the	
  market	
  can	
  also	
  impact	
  the	
  effectiveness	
  of	
  

existing	
  algorithms.	
  For	
  example,	
  a	
  HFT	
  algo	
  that	
  was	
  trading	
  on	
  a	
  phenomenon	
  
that	
  only	
  one	
  firm	
  had	
  spotted	
  initially,	
  may	
  not	
  be	
  effective	
  any	
  more	
  because	
  
various	
  competitors	
  have	
  spotted	
  the	
  pattern	
  and	
  are	
  mining	
  it	
  more	
  effectively.	
  
Thus	
  the	
  original	
  HFT	
  algo	
  might	
  now	
  be	
  ineffective	
  or	
  even	
  loss	
  making.	
  In	
  this	
  
case	
  it’s	
  important	
  to	
  be	
  able	
  to	
  either	
  detect	
  this	
  quickly	
  and	
  then	
  switch	
  it	
  off	
  
or	
  customize	
  the	
  algo	
  to	
  improve	
  it.	
  

	
  
• Reverse	
  engineering	
  –	
  There	
  is	
  a	
  fear	
  in	
  the	
  market	
  that	
  competitors	
  can	
  watch	
  

the	
  pattern	
  of	
  orders	
  from	
  a	
  particular	
  market	
  participant,	
  figure	
  out	
  how	
  their	
  
algorithms	
  work	
  (so-­‐called	
  reverse	
  engineering)	
  and	
  then	
  create	
  algorithms	
  to	
  
out-­‐perform	
  them.	
  An	
  occasional	
  fear	
  that	
  the	
  buy-­‐side	
  firms	
  have	
  is	
  that	
  their	
  
brokers’	
  prop	
  desks	
  are	
  reverse	
  engineering	
  and	
  then	
  front-­‐running	
  their	
  orders.	
  
Of	
  course	
  this	
  would	
  be	
  a	
  breach	
  of	
  regulation	
  and	
  brokers	
  are	
  careful	
  to	
  ensure	
  
it	
  doesn’t	
  happen	
  –	
  but	
  nonetheless	
  the	
  fear	
  remains.	
  

	
  
The	
  requirement	
  for	
  customization	
  and	
  continuous	
  innovation	
  is	
  why	
  there	
  is	
  not	
  a	
  
large	
  market	
  for	
  vendors	
  of	
  shrink-­‐wrapped	
  pre-­‐built	
  algorithms.	
  However,	
  there	
  is	
  
a	
  market	
  for	
  techniques	
  to	
  assist	
  in	
  the	
  rapid	
  creation	
  and	
  customization	
  of	
  
algorithms.	
  Trading	
  is	
  an	
  intellectual	
  property	
  business	
  and	
  often	
  the	
  differences	
  in	
  
algorithms	
  can	
  be	
  the	
  competitive	
  advantage	
  of	
  one	
  firm	
  over	
  another.	
  
	
  
The	
  main	
  areas	
  of	
  interest	
  in	
  rapid	
  development	
  and	
  customization	
  of	
  algorithms	
  
are	
  as	
  follows:	
  
	
  



• Alpha	
  Discovery	
  –	
  Looking	
  for	
  new	
  patterns	
  in	
  the	
  market	
  that	
  might	
  be	
  viable	
  to	
  
trade	
  on.	
  Commercial	
  tools	
  exist	
  to	
  assist	
  with	
  this	
  process	
  but	
  also	
  many	
  
homegrown	
  tools	
  and	
  techniques	
  are	
  used.	
  

	
  
• Algorithm	
  Authoring	
  and	
  Customization	
  –	
  Turning	
  a	
  discovered	
  pattern	
  into	
  an	
  

algorithm	
  that	
  can	
  trade	
  in	
  the	
  market	
  and	
  then	
  being	
  able	
  to	
  evolve	
  that	
  
algorithm	
  over	
  time.	
  There	
  are	
  a	
  number	
  of	
  approaches	
  here.	
  A	
  traditional	
  
approach	
  of	
  using	
  an	
  army	
  of	
  developers	
  to	
  code	
  a	
  strategy.	
  This	
  has	
  a	
  number	
  of	
  
problems,	
  including	
  slow	
  time-­‐to-­‐market,	
  frequently	
  not	
  coming	
  up	
  with	
  the	
  
strategy	
  the	
  business	
  wants	
  and	
  creating	
  a	
  spaghetti	
  code	
  maintenance	
  
nightmare	
  that	
  can	
  only	
  be	
  understood	
  by	
  certain	
  people	
  who	
  then	
  may	
  leave	
  
and	
  create	
  a	
  potential	
  hazard	
  in	
  the	
  market.	
  The	
  term	
  black	
  box	
  describes	
  an	
  
algorithm	
  the	
  workings	
  of	
  which	
  are	
  hidden.	
  In-­‐house	
  build	
  often	
  creates	
  a	
  black	
  
box	
  –	
  only	
  understood	
  by	
  a	
  few	
  technical	
  wizards.	
  Becoming	
  popular	
  is	
  the	
  
concept	
  of	
  a	
  white	
  box	
  algorithm	
  –	
  which	
  is	
  built	
  on	
  a	
  model,	
  the	
  logic	
  of	
  which	
  
can	
  be	
  designed	
  by	
  and	
  is	
  clearly	
  visible	
  to	
  the	
  business	
  and	
  can	
  be	
  easily	
  
changed.	
  Modeling	
  tools	
  enable	
  a	
  strategy	
  to	
  be	
  laid	
  out	
  in	
  terms	
  of	
  state	
  flow,	
  
rules	
  and	
  analytics.	
  Such	
  tools	
  can	
  generate	
  an	
  executable	
  strategy	
  that	
  can	
  be	
  
loaded	
  into	
  an	
  algo	
  engine.	
  The	
  model	
  can	
  be	
  easily	
  changed	
  at	
  any	
  point.	
  

	
  
• Backtesting	
  and	
  Simulation	
  –	
  Backtesting	
  involves	
  using	
  recorded	
  historic	
  data	
  to	
  

determine	
  how	
  an	
  algorithm	
  performs	
  under	
  certain	
  market	
  conditions.	
  This	
  can	
  
range	
  from	
  a	
  bull	
  market	
  to	
  a	
  bear	
  market	
  and	
  can	
  use	
  test	
  data	
  from	
  days	
  with	
  
certain	
  known	
  phenomena,	
  such	
  as	
  a	
  non-­‐farm	
  payrolls	
  release	
  (or	
  other	
  
economic	
  releases)	
  or	
  even	
  the	
  flashcrash.	
  Simulation	
  involves	
  providing	
  
simulated	
  markets	
  for	
  the	
  algorithms	
  to	
  put	
  their	
  orders	
  into.	
  Simulators	
  can	
  be	
  
designed	
  to	
  work	
  hand-­‐in-­‐hand	
  with	
  backtesting	
  environments	
  to,	
  for	
  example,	
  
simulate	
  the	
  market	
  impact	
  of	
  trades	
  (because	
  of	
  course	
  we	
  are	
  replaying	
  
historic	
  information	
  when	
  the	
  trades	
  we’re	
  generating	
  didn’t	
  really	
  happen).	
  
Different	
  firms	
  vary	
  in	
  their	
  approaches	
  to	
  simulation	
  and	
  backtesting.	
  Some	
  use	
  
complex	
  backtesting	
  and	
  simulation;	
  some	
  use	
  simulated	
  markets	
  as	
  provided	
  by	
  
trading	
  venues	
  before	
  going	
  live;	
  some	
  prefer	
  iterative	
  testing	
  in	
  live	
  markets.	
  

	
  
• Production	
  –	
  Putting	
  an	
  algorithm	
  into	
  production	
  involves	
  making	
  it	
  live	
  –	
  so	
  

that	
  it	
  is	
  receiving	
  real	
  market	
  data,	
  making	
  trading	
  decisions	
  and	
  placing	
  actual	
  
orders	
  in	
  the	
  market.	
  Usually	
  algorithms	
  need	
  to	
  be	
  certified,	
  based	
  on	
  a	
  firm’s	
  
internal	
  certification	
  procedures,	
  before	
  they	
  are	
  put	
  into	
  production.	
  This	
  often	
  
involves	
  extensive	
  backtesting	
  and	
  simulation	
  and	
  often	
  some	
  trader	
  user	
  
acceptance	
  testing	
  with	
  some	
  selected	
  early-­‐adopter	
  traders.	
  Most	
  trading	
  
groups	
  feel	
  backtesting	
  and	
  simulation	
  are	
  not	
  a	
  substitute	
  for	
  real	
  usage	
  –	
  and	
  
often	
  reality	
  presents	
  scenarios	
  that	
  were	
  not	
  considered	
  in	
  backtesting.	
  This	
  is	
  
why	
  real-­‐time	
  pre-­‐trade	
  risk	
  precautions	
  should	
  be	
  built	
  into	
  all	
  algorithmic	
  
platforms	
  to	
  provide	
  additional	
  protection	
  against	
  unforeseen	
  circumstances.	
  

	
  



• Analysis	
  and	
  Tuning	
  –	
  Once	
  an	
  algorithm	
  has	
  been	
  running	
  live,	
  its	
  performance	
  
can	
  be	
  analyzed	
  to	
  detect	
  ways	
  in	
  which	
  it	
  can	
  be	
  optimized	
  to	
  be	
  made	
  more	
  
profitable,	
  more	
  efficient	
  or	
  respond	
  more	
  intelligently	
  to	
  certain	
  risk	
  scenarios.	
  
This	
  continuous	
  analysis	
  may	
  also	
  discover	
  that	
  an	
  HFT	
  algo	
  is	
  no	
  longer	
  
profitable	
  enough	
  and	
  should	
  be	
  modified	
  or	
  discontinued.	
  

	
  

The	
  Continuing	
  Evolution	
  of	
  Algo	
  and	
  HFT	
  
One	
  can	
  liken	
  Algo	
  and	
  HFT	
  to	
  gold	
  mining.	
  When	
  gold	
  is	
  discovered	
  in	
  a	
  new	
  
territory	
  it’s	
  often	
  lying	
  around	
  on	
  the	
  surface.	
  When	
  more	
  people	
  hear	
  about	
  the	
  
gold,	
  a	
  goldrush	
  ensues	
  and	
  everyone	
  descends	
  upon	
  the	
  territory.	
  Then	
  one	
  has	
  to	
  
pan	
  for	
  gold	
  in	
  rivers	
  or	
  dig	
  to	
  find	
  the	
  hidden	
  seams	
  of	
  gold.	
  In	
  Algo	
  and	
  particularly	
  
HFT,	
  trading	
  firms	
  are	
  always	
  seeking	
  out	
  new	
  opportunities	
  and	
  trying	
  to	
  mine	
  
them	
  before	
  others	
  descend	
  upon	
  them.	
  
	
  
Some	
  key	
  drivers	
  in	
  the	
  evolution	
  of	
  Algo	
  and	
  HFT	
  are	
  as	
  follows:	
  
	
  
• Asset	
  Class	
  –	
  Initially	
  exchange-­‐traded	
  equities	
  and	
  futures	
  markets	
  were	
  the	
  

focus.	
  However,	
  as	
  FX	
  and	
  bond	
  markets	
  have	
  become	
  increasingly	
  electronic,	
  
open	
  and	
  fragmentation,	
  so	
  Algo	
  and	
  HFT	
  have	
  grown	
  there.	
  More	
  recently,	
  HFT	
  
involving	
  energy	
  trading	
  has	
  been	
  becoming	
  more	
  popular.	
  Throughout	
  this	
  
evolution,	
  some	
  firms	
  have	
  employed	
  algos	
  that	
  incorporate	
  cross-­‐asset	
  class	
  
trading	
  for	
  statistical	
  arbitrage	
  and	
  hedging	
  purposes.	
  
	
  

• Fragmentation	
  –	
  As	
  new	
  markets	
  have	
  emerged,	
  so	
  algorithmic	
  techniques	
  have	
  
evolved	
  to	
  capitalize.	
  Many	
  asset	
  classes	
  have	
  experienced	
  fragmentation	
  and	
  
this	
  trend	
  across	
  all	
  asset	
  classes	
  is	
  likely	
  to	
  continue.	
  Algorithmic	
  techniques	
  to	
  
manage	
  fragmentation	
  involve	
  liquidity	
  aggregation	
  and	
  smart	
  order	
  routing.	
  
Liquidity	
  aggregators	
  create	
  a	
  “super	
  book”	
  that	
  combines	
  liquidity	
  on	
  a	
  per	
  
symbol	
  or	
  currency	
  pair	
  basis.	
  This	
  offers	
  a	
  global	
  ordered	
  view	
  of	
  market	
  depth	
  
for	
  each	
  instrument	
  regardless	
  of	
  which	
  trading	
  venue	
  the	
  liquidity	
  is	
  on.	
  For	
  
example,	
  the	
  best	
  bid	
  for	
  a	
  Eurodollar	
  future	
  may	
  be	
  on	
  CME,	
  the	
  second	
  best	
  
may	
  be	
  ELX.	
  If	
  human	
  traders	
  or	
  algorithms	
  trade,	
  then	
  smart	
  order	
  routing	
  
sends	
  the	
  order	
  to	
  the	
  relevant	
  market(s)	
  on	
  which	
  the	
  quote	
  is	
  displayed.	
  Low	
  
latency	
  and	
  rapid	
  update	
  are	
  clearly	
  important	
  here	
  to	
  avoid	
  dealing	
  with	
  stale	
  
liquidity	
  information.	
  

	
  
FX	
  is	
  becoming	
  of	
  increasing	
  relevance	
  to	
  the	
  futures	
  community	
  as	
  currency	
  
futures	
  and	
  futures	
  equivalents	
  are	
  being	
  aggregated	
  in	
  FX	
  liquidity	
  aggregators,	
  
combined	
  with	
  FX-­‐specific	
  trading	
  venues	
  and	
  bank	
  liquidity.	
  Also	
  FX	
  is	
  often	
  
used	
  as	
  an	
  important	
  component	
  of	
  cross-­‐border	
  futures	
  strategies.	
  

	
  
• Geography	
  –	
  Algo	
  and	
  HFT	
  started	
  predominantly	
  in	
  the	
  US	
  and	
  UK	
  markets	
  but	
  

have	
  spread	
  geographically	
  over	
  time.	
  Firstly	
  the	
  spread	
  was	
  to	
  other	
  major	
  
trading	
  centers	
  such	
  as	
  Tokyo,	
  Sydney,	
  Hong	
  Kong,	
  Toronto	
  and	
  across	
  Europe.	
  
Then	
  to	
  locations	
  such	
  as	
  Korea,	
  Singapore	
  and	
  one	
  of	
  the	
  hottest	
  new	
  markets	
  –	
  



Brazil,	
  where	
  both	
  futures	
  and	
  equities	
  are	
  now	
  widely	
  traded	
  algorithmically	
  on	
  
BMF-­‐Bovespa.	
  At	
  each	
  stage,	
  algos	
  have	
  to	
  be	
  specialized	
  to	
  the	
  characteristics	
  of	
  
the	
  local	
  markets.	
  Each	
  new	
  market	
  presents	
  new	
  trading	
  opportunities.	
  

	
  

Algo	
  and	
  HFT	
  Platforms	
  and	
  Technologies	
  
Many	
  firms	
  still	
  use	
  in-­‐house	
  development	
  for	
  the	
  custom	
  creation	
  of	
  algos.	
  
However,	
  due	
  to	
  the	
  need	
  to	
  create,	
  evolve,	
  backtest	
  and	
  tune	
  algorithms	
  rapidly,	
  as	
  
well	
  as	
  keep	
  up	
  with	
  connections	
  to	
  new	
  trading	
  venues,	
  an	
  increasing	
  number	
  of	
  
firms	
  are	
  using	
  third-­‐party	
  products	
  to	
  help	
  accelerate	
  their	
  trading	
  lifecycle.	
  Some	
  
key	
  technologies	
  include	
  the	
  following:	
  
	
  
• Execution	
  Management	
  Systems	
  –	
  Front-­‐end	
  trading	
  systems	
  that	
  allow	
  access	
  to	
  

broker	
  algorithms	
  as	
  well	
  as	
  access	
  to	
  custom	
  algorithms	
  integrated	
  with	
  the	
  
EMS.	
  Leading	
  providers	
  include	
  FlexTrade,	
  Portware	
  and	
  Orc.	
  

	
  
• Complex	
  Event	
  Processing	
  –	
  A	
  platform	
  specifically	
  designed	
  for	
  complex	
  analysis	
  

and	
  response	
  to	
  high	
  frequency	
  data.	
  CEP	
  platforms,	
  such	
  as	
  Progress	
  Apama,	
  
incorporate	
  graphical	
  modeling	
  tools	
  that	
  can	
  rapidly	
  capture	
  and	
  customize	
  
strategies	
  and	
  a	
  trading	
  engine	
  connected	
  to	
  any	
  combination	
  of	
  cross-­‐asset	
  
market	
  data	
  and	
  trading	
  venues.	
  CEP	
  is	
  used	
  widely	
  for	
  algo	
  trading,	
  HFT,	
  
liquidity	
  aggregation,	
  smart	
  order	
  routing,	
  pre-­‐trade	
  risk	
  and	
  market	
  
surveillance.	
  

	
  
• Tick	
  Databases	
  –	
  A	
  real-­‐time	
  time-­‐series	
  database	
  designed	
  to	
  capture	
  and	
  store	
  

high	
  frequency	
  data	
  for	
  analysis	
  and	
  backtesting.	
  Providers	
  include	
  Thomson-­‐
Reuters	
  and	
  KX	
  Systems.	
  

	
  

Algo	
  and	
  HFT	
  Safety	
  Net	
  
HFT	
  can	
  scale	
  the	
  capabilities	
  of	
  a	
  trader	
  hundreds	
  or	
  thousands	
  of	
  times.	
  However,	
  
this	
  can	
  of	
  course	
  increase	
  trading	
  risk	
  too.	
  To	
  complement	
  high	
  frequency	
  trading,	
  
high	
  frequency	
  pre-­‐trade	
  risk	
  capabilities	
  are	
  needed.	
  Many	
  firms	
  embraced	
  this	
  
concept	
  some	
  time	
  ago.	
  However,	
  certain	
  groups	
  used	
  to	
  turn	
  off	
  their	
  pre-­‐trade	
  risk	
  
management	
  as	
  it	
  “slowed	
  them	
  down”	
  and	
  any	
  potential	
  downside	
  was	
  over-­‐
balanced	
  by	
  the	
  potential	
  upside	
  of	
  trading	
  first.	
  That	
  situation	
  has	
  changed	
  after	
  the	
  
2008	
  market	
  and	
  the	
  flashcrash,	
  and	
  with	
  increased	
  regulator	
  scrutiny.	
  
	
  
Two	
  approaches	
  being	
  successfully	
  used	
  to	
  mitigate	
  trading	
  risk	
  are:	
  
	
  
• Real-­‐time	
  Pre-­‐trade	
  Risk	
  Firewall	
  –	
  It	
  is	
  possible	
  to	
  continuously	
  recalculate	
  risk	
  

exposures	
  on	
  positions	
  whilst	
  monitoring	
  trades	
  as	
  they	
  go	
  to	
  market	
  and	
  
determining	
  what	
  impact	
  they	
  would	
  have	
  on	
  pre-­‐defined	
  risk	
  limits.	
  In	
  the	
  
event	
  of	
  a	
  threshold	
  breach,	
  trades	
  can	
  be	
  blocked	
  from	
  going	
  to	
  market.	
  It	
  is	
  
also	
  possible	
  to	
  monitor	
  for	
  erroneous	
  trades,	
  such	
  as	
  “fat	
  finger	
  trades”	
  and	
  



block	
  them.	
  This	
  facility	
  is	
  not	
  just	
  useful	
  for	
  trading	
  groups	
  but	
  also	
  for	
  brokers	
  
offering	
  sponsored	
  access,	
  to	
  monitor	
  on	
  a	
  per	
  client	
  basis.	
  Using	
  the	
  latest	
  
technology	
  platforms,	
  such	
  as	
  CEP,	
  enables	
  pre-­‐trade	
  checks	
  to	
  be	
  performed	
  
with	
  minimal	
  latency.	
  	
  

	
  
• Backtesting	
  and	
  Market	
  Simulation	
  –	
  As	
  introduced	
  above,	
  before	
  putting	
  algos	
  

live,	
  it	
  is	
  highly	
  beneficial	
  to	
  test	
  them	
  with	
  a	
  variety	
  of	
  real	
  historical	
  and	
  pre-­‐
canned	
  scenarios	
  to	
  see	
  how	
  they	
  would	
  perform	
  if	
  live.	
  This	
  can	
  be	
  done	
  in	
  
conjunction	
  with	
  realistic	
  and	
  tunable	
  market	
  simulators.	
  

	
  

Real-­‐time	
  Market	
  Monitoring	
  and	
  Surveillance	
  
Several	
  regulators	
  around	
  the	
  world	
  have	
  recognized	
  that	
  real-­‐time	
  market	
  
monitoring	
  and	
  surveillance	
  allows	
  more	
  rapid	
  response	
  to	
  potential	
  crises	
  and	
  
market	
  abuse	
  –	
  potentially	
  allowing	
  rapid	
  action	
  to	
  prevent	
  or	
  minimize	
  any	
  market	
  
impact.	
  The	
  FSA	
  –	
  the	
  UK	
  regulator	
  -­‐	
  was	
  one	
  of	
  the	
  first	
  to	
  speak	
  up	
  on	
  this	
  and	
  
specify	
  a	
  system	
  to	
  achieve	
  more	
  real-­‐time	
  monitoring	
  using	
  Complex	
  Event	
  
Processing.	
  Now	
  other	
  regulators	
  around	
  the	
  world	
  are	
  looking	
  at	
  similar	
  
approaches.	
  Many	
  trading	
  venues	
  have	
  long	
  had	
  real-­‐time	
  surveillance	
  technologies	
  
but	
  there	
  is	
  a	
  lack	
  of	
  consistency	
  across	
  the	
  market.	
  Brokers	
  can	
  also	
  benefits	
  from	
  
this	
  kind	
  of	
  technology	
  to	
  prevent	
  abuse	
  in	
  their	
  trading	
  operations	
  and	
  ensure	
  their	
  
good	
  reputation.	
  
	
  
The	
  goal	
  of	
  real-­‐time	
  monitoring	
  is	
  to	
  detect	
  anomalous	
  market	
  movements,	
  e.g.	
  
price	
  or	
  volume	
  spikes	
  for	
  a	
  particular	
  symbol	
  on	
  one	
  or	
  more	
  exchanges.	
  This	
  
provides	
  an	
  early	
  warning	
  system	
  to	
  potential	
  market	
  problems	
  and	
  enables	
  rapid	
  
response.	
  
	
  
In	
  the	
  case	
  of	
  real-­‐time	
  market	
  surveillance,	
  the	
  goal	
  is	
  to	
  detect	
  potential	
  market	
  
abuse	
  while	
  it	
  is	
  happening.	
  The	
  FSA	
  drew	
  an	
  analogy	
  that	
  “traders	
  are	
  driving	
  
Ferraris	
  and	
  regulators	
  are	
  trying	
  to	
  catch	
  them	
  on	
  bicycles”.	
  Utilizing	
  the	
  same	
  
technology	
  used	
  in	
  HFT	
  for	
  real-­‐time	
  surveillance	
  and	
  monitoring	
  gives	
  regulators	
  
“Ferraris	
  as	
  police	
  cars”,	
  to	
  be	
  able	
  to	
  keep	
  up	
  with	
  the	
  high	
  frequency	
  markets.	
  The	
  
kind	
  of	
  patterns	
  that	
  can	
  be	
  detected	
  include:	
  
	
  
• Insider	
  trading,	
  e.g.	
  detection	
  of	
  an	
  unusually	
  large	
  trading	
  pattern	
  followed	
  

closely	
  by	
  a	
  news	
  event	
  that	
  moves	
  the	
  market.	
  
• Front	
  running	
  of	
  orders,	
  e.g.	
  detection	
  of	
  unusual	
  and	
  coincidental	
  orders	
  from	
  a	
  

prop	
  desk	
  just	
  prior	
  to	
  an	
  event	
  that	
  moves	
  the	
  market,	
  such	
  as	
  a	
  large	
  client	
  
order	
  being	
  placed	
  by	
  the	
  broker	
  in	
  the	
  same	
  firm	
  or	
  some	
  research	
  being	
  
published	
  by	
  an	
  analyst	
  in	
  the	
  same.	
  

• Painting	
  the	
  tape,	
  i.e.	
  continuously	
  taking	
  the	
  best	
  offer	
  in	
  the	
  market	
  to	
  drive	
  the	
  
price	
  up.	
  

• Fictitious	
  orders	
  to	
  manipulate	
  the	
  price	
  and	
  try	
  to	
  get	
  algos	
  to	
  respond.	
  



• Trader	
  collusion,	
  in	
  which	
  traders	
  cooperate	
  to	
  deliberately	
  inflate	
  instrument	
  
volume	
  and	
  price,	
  such	
  as	
  in	
  wash	
  trading.	
  

	
  
Keeping	
  an	
  audit	
  trail	
  of	
  market	
  data	
  and	
  potential	
  abuse	
  cases	
  is	
  also	
  important.	
  
Tick	
  databases	
  can	
  be	
  used	
  here.	
  Surveillance	
  systems	
  also	
  involve	
  researching	
  new	
  
abuse	
  patterns,	
  using	
  business	
  analytics	
  platforms	
  (from	
  providers	
  such	
  as	
  SAS).	
  
	
  

Will	
  Algo	
  and	
  HFT	
  replace	
  the	
  trader?	
  
The	
  evolution	
  to	
  Algo	
  and	
  HFT	
  is	
  somewhat	
  analogous	
  to	
  the	
  markets	
  moving	
  from	
  
open	
  outcry	
  to	
  electronic	
  trading.	
  When	
  the	
  Liffe	
  floor	
  in	
  London	
  went	
  electronic,	
  
half	
  of	
  the	
  traders	
  evolved	
  to	
  the	
  new	
  way	
  of	
  doing	
  things	
  and	
  the	
  other	
  half	
  went	
  to	
  
drive	
  London	
  cabs.	
  The	
  same	
  is	
  true	
  with	
  Algo	
  and	
  HFT.	
  Traders	
  who	
  are	
  more	
  
involved	
  with	
  simple	
  order	
  entry	
  will	
  inevitably	
  be	
  replaced	
  by	
  technology.	
  	
  
However,	
  Algo	
  and	
  HFT	
  is	
  an	
  intellectual	
  property	
  business	
  –	
  so	
  those	
  with	
  the	
  right	
  
expertise	
  become	
  the	
  creative	
  minds	
  and	
  the	
  high	
  level	
  coordinators	
  of	
  armies	
  of	
  
algorithms.	
  Humans	
  are	
  here	
  to	
  stay.	
  
	
  

Are	
  Algo	
  and	
  HFT	
  out	
  of	
  the	
  price	
  range	
  of	
  small	
  firms?	
  
Much	
  has	
  been	
  made	
  in	
  the	
  mainstream	
  press	
  of	
  the	
  unfair	
  advantage	
  of	
  HFT	
  
compared	
  with	
  techniques	
  available	
  to	
  the	
  ordinary	
  investor.	
  Actually	
  fund	
  
managers	
  will	
  use	
  algos	
  on	
  behalf	
  of	
  the	
  ordinary	
  investor.	
  And	
  HFT	
  helps	
  keep	
  
markets	
  more	
  efficient	
  and	
  trading	
  more	
  cost	
  effective	
  at	
  the	
  benefit	
  of	
  the	
  ordinary	
  
investor.	
  
	
  
With	
  regard	
  to	
  setting	
  up	
  an	
  HFT	
  shop,	
  everything	
  described	
  in	
  this	
  document	
  is	
  
available	
  to	
  any	
  firm.	
  The	
  question	
  is	
  can	
  they	
  afford	
  it?	
  HFT	
  is	
  like	
  motor	
  racing.	
  
There	
  are	
  some	
  firms	
  that	
  compete	
  in	
  Formula	
  1	
  –	
  with	
  huge	
  budgets	
  and	
  the	
  
world’s	
  top	
  talent;	
  others	
  compete	
  in	
  national	
  championships;	
  others	
  in	
  club	
  racing;	
  
all	
  can	
  potentially	
  win	
  their	
  tier	
  and	
  be	
  successful.	
  For	
  $200,000	
  or	
  less	
  per	
  year	
  a	
  
firm	
  can	
  run	
  a	
  small	
  HFT	
  operation.	
  I	
  believe	
  the	
  costs	
  are	
  going	
  to	
  fall	
  as	
  hosted	
  
services	
  offering	
  customizable	
  Algo	
  and	
  HFT	
  capabilities	
  emerge.	
  CQG	
  and	
  Ffastfill,	
  
both	
  hosted	
  providers	
  of	
  trading	
  platforms	
  to	
  the	
  commodities	
  and	
  futures	
  markets,	
  
have	
  already	
  started	
  offering	
  customizable	
  algorithms	
  and	
  spreaders	
  at	
  a	
  lower	
  cost.	
  
It	
  is	
  even	
  possible	
  to	
  offer	
  hosted	
  modeling	
  tools	
  that	
  allow	
  totally	
  custom	
  algos	
  to	
  
be	
  created	
  and	
  deployed	
  into	
  the	
  cloud.	
  In	
  this	
  kind	
  of	
  scenario	
  small	
  trading	
  firms	
  
can	
  concentrate	
  on	
  their	
  own	
  IP	
  and	
  don’t	
  need	
  to	
  create	
  in-­‐premise	
  IT	
  shops	
  with	
  
skilled	
  IT	
  people,	
  hardware,	
  software,	
  dedicated	
  networks	
  etc.	
  This	
  will	
  inevitably	
  
continue	
  to	
  evolve	
  with	
  new	
  entrants,	
  lowering	
  the	
  barriers	
  to	
  entry	
  for	
  HFT.	
  	
  



Thoughts	
  on	
  Regulation	
  of	
  Algo	
  and	
  HFT	
  
	
  

Market	
  Impact	
  
	
  
What	
  are	
  the	
  positive	
  or	
  negative	
  impacts	
  of	
  Algo	
  and	
  HFT	
  on	
  the	
  futures	
  markets	
  and	
  
market	
  structure	
  (e.g.	
  liquidity,	
  volatility;	
  impact	
  of	
  fundamentals,	
  commercials	
  or	
  
hedgers;	
  other	
  issues)?	
  
	
  
There	
  are	
  a	
  number	
  of	
  positive	
  impacts	
  of	
  Algo	
  and	
  HFT	
  –	
  but	
  there	
  are	
  also	
  a	
  
number	
  of	
  potential	
  negative	
  impacts.	
  However,	
  all	
  of	
  the	
  negative	
  impacts	
  can	
  be	
  
mitigated	
  by	
  a	
  combination	
  of	
  good	
  policing	
  and	
  best	
  practices	
  from	
  regulators,	
  
trading	
  venues	
  and	
  market	
  participants.	
  
	
  
The	
  positive	
  impacts	
  of	
  Algo	
  and	
  HFT	
  include	
  the	
  following:	
  
	
  
• Minimize	
  market	
  impact	
  of	
  large	
  trades	
  –	
  As	
  already	
  described,	
  algorithmic	
  

trading	
  provides	
  an	
  automated	
  and	
  intelligence	
  way	
  to	
  break	
  down	
  large	
  orders	
  
into	
  smaller	
  chunks	
  to	
  minimize	
  their	
  impact	
  on	
  the	
  market,	
  while	
  achieving	
  a	
  
benchmarked	
  price.	
  The	
  market	
  statistics	
  illustrate	
  the	
  impact:	
  for	
  all	
  global	
  
markets	
  the	
  average	
  order	
  size	
  has	
  fallen,	
  while	
  the	
  number	
  of	
  order	
  has	
  risen	
  
significantly.	
  

	
  
• Lower	
  cost	
  of	
  execution	
  –	
  Execution	
  algorithms	
  put	
  capabilities	
  previously	
  only	
  

available	
  to	
  the	
  elite	
  into	
  the	
  hands	
  of	
  the	
  mainstream	
  buy-­‐side.	
  The	
  use	
  of	
  algos	
  
rather	
  than	
  more	
  expensive	
  traders	
  and	
  the	
  competition	
  between	
  brokers	
  
continues	
  to	
  drive	
  down	
  margins	
  and	
  help	
  the	
  buyside	
  achieve	
  a	
  significantly	
  
reduced	
  cost	
  of	
  execution.	
  

	
  
• More	
  efficient	
  markets	
  –	
  Most	
  emerging	
  statistical	
  arbitrage	
  opportunities	
  will	
  

be	
  quickly	
  identified	
  by	
  firms	
  and	
  algorithms	
  created	
  to	
  mine	
  the	
  seams	
  of	
  gold.	
  
Thus	
  markets	
  are	
  continuously	
  evolving	
  and	
  becoming	
  more	
  efficient.	
  

	
  
• More	
  open	
  and	
  competitive	
  trading	
  markets	
  –	
  Contrary	
  to	
  some	
  popular	
  opinion,	
  

there	
  is	
  less	
  of	
  a	
  monopoly	
  in	
  the	
  market	
  generally.	
  Although	
  the	
  top	
  tier	
  firms	
  
can	
  still	
  hire	
  top	
  talent	
  and	
  are	
  continuously	
  seen	
  as	
  mysterious	
  controllers	
  of	
  
the	
  market,	
  the	
  reality	
  is	
  that	
  one	
  or	
  two	
  individuals	
  can	
  set	
  up	
  a	
  firm	
  that	
  can	
  
have	
  access	
  to	
  the	
  same	
  kind	
  of	
  technology	
  as	
  the	
  large	
  players.	
  Technologies	
  
like	
  CEP,	
  widely	
  available	
  low	
  latency	
  market	
  connectivity	
  and	
  hosting	
  
environments	
  enable	
  “Fred	
  and	
  Ed	
  in	
  a	
  shed”	
  to	
  run	
  an	
  advanced	
  quant	
  trading	
  
operation.	
  

	
  



• Faster	
  evolving	
  trading	
  venues	
  –	
  Market	
  fragmentation	
  has	
  caused	
  increased	
  
competition	
  for	
  liquidity	
  between	
  trading	
  venues.	
  This	
  is	
  putting	
  pressure	
  on	
  
exchange	
  costs.	
  It	
  is	
  also	
  accelerating	
  the	
  level	
  of	
  technological	
  advancement	
  
provides	
  by	
  trading	
  venues	
  –	
  for	
  example,	
  lower	
  matching	
  latency,	
  improved	
  
order	
  throughput	
  and	
  more	
  value-­‐added	
  services,	
  such	
  as	
  co-­‐lo.	
  

	
  
• Encouraging	
  entrepreneurship	
  –	
  HFT	
  is	
  the	
  ultimate	
  form	
  of	
  capitalism.	
  It	
  enables	
  

intellectual	
  property	
  to	
  be	
  turned	
  into	
  profit	
  (or	
  loss)	
  rapidly,	
  whether	
  within	
  a	
  
large	
  firm	
  or	
  as	
  part	
  of	
  a	
  smaller	
  firm.	
  

	
  
• Increasing	
  productivity	
  –	
  One	
  trader	
  can	
  manage	
  a	
  handful	
  of	
  instruments	
  and	
  

can	
  manage	
  a	
  few	
  trading	
  strategies	
  manually.	
  A	
  trader	
  watches	
  the	
  market	
  and	
  
responds	
  by	
  entering	
  orders	
  when	
  (s)he	
  instinctively	
  spots	
  patterns	
  in	
  the	
  
market.	
  In	
  an	
  algo-­‐enabled	
  world,	
  a	
  single	
  trader	
  can	
  be	
  the	
  initiator	
  and	
  
coordinator	
  of	
  hundreds	
  or	
  thousands	
  of	
  instances	
  of	
  algorithms.	
  The	
  trader	
  can	
  
see	
  P&L	
  and	
  status	
  for	
  all	
  algorithmic	
  instances	
  on	
  real-­‐time	
  dashboards	
  and	
  can	
  
manually	
  intervene	
  when	
  required.	
  In	
  this	
  way,	
  the	
  productivity	
  of	
  a	
  single	
  
trader	
  can	
  be	
  scaled	
  hundreds	
  or	
  thousands	
  of	
  times.	
  

	
  
• Increasing	
  US	
  dominance	
  in	
  the	
  global	
  economy	
  –	
  Many	
  media	
  commentators	
  

have	
  portrayed	
  Algo	
  and	
  HFT	
  as	
  some	
  dark,	
  mysterious,	
  unfair	
  and	
  elite	
  practice.	
  
Actually	
  none	
  of	
  these	
  is	
  true	
  or	
  fair.	
  Commentators	
  also	
  speak	
  of	
  the	
  danger	
  of	
  
derivatives	
  and	
  we	
  should	
  just	
  go	
  back	
  to	
  owning	
  a	
  share	
  or	
  a	
  commodity	
  –	
  
because	
  you	
  know	
  where	
  you	
  stood.	
  In	
  fact	
  the	
  capital	
  markets	
  are	
  a	
  major	
  part	
  
of	
  the	
  US	
  economy	
  and	
  a	
  key	
  part	
  of	
  its	
  economic	
  leadership	
  in	
  the	
  world	
  –	
  and	
  
central	
  to	
  this	
  is	
  the	
  growing	
  area	
  of	
  Algo	
  and	
  HFT.	
  The	
  recent	
  economic	
  
downturn	
  was	
  not	
  caused	
  by	
  Algo	
  and	
  HFT	
  but	
  by	
  more	
  fundamental	
  factors.	
  We	
  
can	
  take	
  some	
  lessons	
  from	
  the	
  recent	
  flashcrash	
  to	
  enhance	
  the	
  safety	
  system	
  of	
  
Algo	
  and	
  HFT,	
  given	
  their	
  importance	
  to	
  the	
  economy.	
  We	
  must	
  be	
  careful	
  not	
  to	
  
over-­‐regulate	
  and	
  damage	
  this	
  important	
  economic	
  engine.	
  

	
  
	
  
Possible	
  negative	
  issues	
  that	
  can	
  arise	
  from	
  Algo	
  and	
  HFT	
  include	
  the	
  following:	
  
	
  
• Accelerating	
  and	
  accentuating	
  market	
  movements	
  –	
  While	
  algorithms	
  didn’t	
  

cause	
  the	
  flashcrash,	
  it	
  is	
  likely	
  they	
  accelerated	
  and	
  accentuated	
  it.	
  Algos	
  have	
  
no	
  emotion;	
  they	
  are	
  looking	
  for	
  pre-­‐programmed	
  opportunities	
  and	
  will	
  
ruthlessly	
  execute	
  against	
  them.	
  Some	
  market	
  panic	
  in	
  particular	
  instruments,	
  as	
  
is	
  suspected	
  to	
  have	
  happened	
  in	
  the	
  flashcrash,	
  which	
  then	
  trigger	
  stop-­‐losses	
  
and	
  a	
  radical	
  market	
  trend	
  downwards	
  might	
  lead	
  to	
  algos	
  shorting	
  those	
  
instruments	
  and	
  then,	
  at	
  an	
  appropriate	
  instant,	
  buying	
  them	
  back	
  at	
  a	
  profit.	
  
This	
  is	
  of	
  course	
  true	
  for	
  all	
  market	
  movements	
  every	
  day	
  –	
  and	
  flashcrash-­‐style	
  
incidents	
  are	
  infrequent.	
  Although	
  there	
  are	
  a	
  number	
  of	
  mitigating	
  measures	
  
that	
  regulators,	
  trading	
  venues	
  and	
  trading	
  institutions	
  can	
  take	
  around	
  real-­‐
time	
  market	
  monitoring	
  and	
  response	
  (see	
  below).	
  



	
  
• Easier	
  to	
  game	
  the	
  market	
  –	
  With	
  millions	
  of	
  autonomous	
  algorithms	
  looking	
  for	
  

opportunities,	
  it	
  is	
  easier	
  to	
  spoof	
  the	
  market,	
  for	
  example	
  by	
  sending	
  in	
  
anomalous	
  quotes	
  to	
  try	
  to	
  trigger	
  certain	
  behavior	
  in	
  algorithms.	
  It’s	
  also	
  easier	
  
to	
  carry	
  out	
  potential	
  market	
  abuse,	
  such	
  as	
  wash	
  trades	
  or	
  painting	
  the	
  tape,	
  
because	
  finding	
  that	
  abuse	
  in	
  a	
  high	
  frequency,	
  fragmented	
  world	
  is	
  challenging.	
  
Again	
  here,	
  regulators,	
  trading	
  venues	
  and	
  trading	
  institutions	
  can	
  employ	
  real-­‐
time	
  surveillance	
  and	
  response	
  to	
  mitigate	
  these	
  risks.	
  

	
  
• Increased	
  risk	
  profile	
  –	
  As	
  stated	
  above,	
  algorithms	
  can	
  make	
  a	
  trader	
  hundreds	
  

or	
  thousands	
  of	
  times	
  more	
  productive.	
  This	
  can	
  also	
  increase	
  the	
  risk	
  profile	
  
hundreds	
  or	
  thousands	
  of	
  times.	
  In	
  addition,	
  algorithms	
  are	
  moving	
  very	
  fast	
  and	
  
without	
  proper	
  pre-­‐trade	
  risk	
  precautions,	
  critical	
  exposure	
  levels	
  can	
  be	
  
quickly	
  exceeded	
  or	
  errors,	
  such	
  as	
  fat	
  finger	
  trades,	
  can	
  be	
  quickly	
  accentuated.	
  

	
  
• Algos	
  can	
  go	
  wild	
  –	
  Different	
  trading	
  firms	
  have	
  different	
  standards	
  of	
  

certification	
  for	
  algorithms	
  before	
  putting	
  them	
  live	
  –	
  and	
  in	
  some	
  cases	
  some	
  
logic	
  may	
  be	
  incorrect	
  or	
  missing.	
  Also,	
  the	
  phenomenon	
  of	
  the	
  black	
  swan	
  
means	
  that	
  algorithms	
  may	
  meet	
  scenarios	
  they	
  have	
  never	
  been	
  prepared	
  for.	
  
For	
  these	
  reasons,	
  algorithms	
  can	
  go	
  wrong	
  or	
  behave	
  against	
  their	
  intended	
  
specification.	
  This	
  can	
  result	
  in	
  incorrect	
  orders	
  being	
  placed	
  into	
  the	
  market	
  
and	
  a	
  large	
  potential	
  loss.	
  Worse	
  still,	
  it	
  can	
  result	
  in	
  a	
  stream	
  of	
  spurious	
  orders	
  
being	
  placed	
  into	
  the	
  market.	
  There	
  have	
  been	
  a	
  number	
  of	
  such	
  cases	
  covered	
  in	
  
the	
  press	
  in	
  the	
  last	
  year.	
  The	
  problem	
  with	
  algorithms	
  is	
  that	
  they	
  are	
  running	
  
at	
  very	
  high	
  speed	
  and	
  detecting	
  these	
  problems	
  can	
  be	
  challenging.	
  One	
  way	
  to	
  
catch	
  this	
  is	
  that	
  a	
  trader	
  needs	
  to	
  be	
  watching	
  positions	
  and	
  behavior	
  on	
  real-­‐
time	
  dashboard.	
  Ideally	
  algorithmic	
  platforms	
  have	
  a	
  “big	
  red	
  button”	
  to	
  pull	
  one	
  
or	
  all	
  algorithms	
  from	
  the	
  market.	
  Often	
  traders	
  then	
  prefer	
  to	
  hedge	
  the	
  
undesired	
  positions	
  manually.	
  A	
  more	
  effective	
  approach	
  to	
  algos-­‐gone-­‐wild	
  is	
  to	
  
have	
  a	
  real-­‐time	
  pre-­‐trade	
  risk	
  firewall	
  capability	
  –	
  that	
  can	
  block	
  incorrect	
  or	
  
spurious	
  trades	
  going	
  to	
  market	
  if	
  they	
  fall	
  outside	
  a	
  particular	
  behavior,	
  break	
  
policies	
  or	
  exceed	
  particular	
  risk	
  exposures.	
  

	
  
• Potential	
  for	
  market	
  denial-­‐of-­‐service-­‐style	
  attacks	
  –	
  There	
  have	
  been	
  a	
  number	
  of	
  

incidences	
  when	
  out	
  of	
  control	
  algorithms	
  have	
  fired	
  streams	
  of	
  orders	
  into	
  the	
  
market	
  in	
  quick	
  succession.	
  This	
  can	
  act	
  in	
  the	
  same	
  way	
  as	
  a	
  network	
  “denial	
  of	
  
service”	
  attack	
  –	
  in	
  which	
  a	
  network	
  firewall	
  spends	
  all	
  its	
  time	
  rejecting	
  
fraudulent	
  packets	
  and	
  thus	
  cannot	
  accept	
  any	
  real	
  data	
  packets.	
  The	
  market	
  can	
  
be	
  taken	
  up	
  with	
  handling	
  these	
  orders	
  and	
  thus	
  slowed	
  down	
  significantly.	
  

	
  
• Additional	
  load	
  on	
  trading	
  venues	
  –	
  Further	
  to	
  the	
  above	
  point,	
  many	
  algorithms	
  

adjust	
  their	
  bids	
  and	
  offers	
  in	
  the	
  markets	
  as	
  the	
  market	
  changes	
  –	
  cancelling	
  
current	
  orders	
  and	
  replacing	
  them	
  with	
  modified	
  orders.	
  If	
  this	
  increases	
  it	
  will	
  
also	
  start	
  to	
  slow	
  down	
  the	
  markets.	
  Many	
  trading	
  venues	
  have	
  considered	
  



charging	
  for	
  excessive	
  order	
  cancellations	
  due	
  to	
  the	
  additional	
  load	
  that	
  it	
  puts	
  
on.	
  

	
  
• Increased	
  difficulty	
  of	
  policing	
  the	
  market	
  –	
  Millions	
  of	
  high	
  frequency	
  algorithms	
  

combined	
  with	
  market	
  fragmentation,	
  cross-­‐asset	
  trading,	
  dark	
  liquidity	
  and	
  the	
  
challenges	
  identifying	
  which	
  clients	
  of	
  member	
  firms	
  are	
  doing	
  what	
  –	
  all	
  
combine	
  to	
  make	
  the	
  job	
  of	
  the	
  regulator	
  very	
  challenging.	
  New	
  technologies	
  and	
  
techniques,	
  such	
  as	
  CEP-­‐powered	
  real-­‐time	
  surveillance	
  have	
  been	
  shown	
  to	
  
help	
  here	
  –	
  but	
  the	
  situation	
  is	
  still	
  complex.	
  
	
  

• Potentially	
  easier	
  for	
  terrorists	
  to	
  manipulate	
  markets	
  –	
  A	
  homeland	
  security	
  
issue	
  is	
  that	
  if	
  errors,	
  panic	
  and	
  wild	
  algorithms	
  can	
  influence	
  market	
  behavior	
  
then	
  it	
  may	
  be	
  possible	
  for	
  terrorists	
  to	
  initiate	
  such	
  behaviors.	
  We	
  need	
  to	
  
ensure	
  there	
  are	
  precautions	
  in	
  place	
  to	
  initiate	
  circuit	
  breakers	
  consistently	
  in	
  
such	
  a	
  circumstance.	
  	
  

	
  
• Popular	
  fear	
  of	
  “big	
  brother”	
  –	
  The	
  last	
  year	
  has	
  demonstrated	
  that	
  the	
  media	
  

and	
  the	
  general	
  populace	
  have	
  taken	
  a	
  negative	
  attitude	
  to	
  banks	
  and	
  also	
  to	
  
HFT.	
  There	
  has	
  been	
  a	
  lot	
  of	
  coverage	
  of	
  certain	
  Senators	
  implying	
  that	
  HFT	
  
gives	
  firms	
  an	
  unfair	
  advantage.	
  Unfairly,	
  HFT	
  has	
  been	
  linked	
  to	
  the	
  economic	
  
downturn.	
  The	
  media	
  has	
  portrayed	
  big	
  brother	
  style	
  algorithms	
  taking	
  
advantage	
  of	
  the	
  ordinary	
  investor.	
  Clearly	
  HFT	
  needs	
  a	
  Public	
  Relations	
  
makeover!	
  

	
  
	
  

Regulation	
  and	
  Best	
  Practices	
  

Should	
  the	
  Commission	
  adopt	
  regulations	
  and	
  best	
  practices	
  (e.g.	
  trading,	
  oversight,	
  
surveillance	
  and	
  risk	
  management)	
  related	
  to	
  Algo	
  and	
  HFT?	
  
	
  
The	
  CFTC	
  should	
  not	
  restrict	
  Algo	
  and	
  HFT.	
  Rather	
  they	
  should	
  improve	
  the	
  policing	
  
of	
  the	
  markets	
  in	
  the	
  form	
  of	
  market	
  monitoring	
  and	
  surveillance,	
  and	
  encourage	
  
best	
  practices	
  around	
  pre-­‐trade	
  risk	
  for	
  market	
  participants.	
  
	
  

What	
  should	
  the	
  role	
  of	
  the	
  Commission,	
  exchanges,	
  clearing	
  organizations	
  and	
  the	
  
NFA	
  be	
  with	
  regard	
  to	
  any	
  oversight	
  of	
  Algo	
  or	
  HFT?	
  
	
  
The	
  CFTC	
  should	
  take	
  on	
  the	
  role	
  of	
  God’s	
  eye	
  oversight	
  of	
  the	
  market.	
  In	
  other	
  
words	
  the	
  CFTC	
  should	
  be	
  empowered	
  to	
  do	
  the	
  following:	
  
	
  
• Real-­‐time	
  visibility	
  -­‐	
  See	
  in	
  real-­‐time	
  what	
  is	
  happening	
  on	
  all	
  of	
  the	
  markets	
  the	
  

CFTC	
  supervise	
  (and	
  potentially	
  ones	
  they	
  don’t).	
  This	
  involves	
  connecting	
  to	
  
those	
  markets	
  and	
  getting	
  a	
  real-­‐time	
  feed	
  of	
  full	
  market	
  depth	
  and	
  trade	
  



information	
  for	
  each	
  market.	
  Using	
  this	
  information,	
  market	
  monitoring	
  and	
  
surveillance	
  should	
  be	
  provided	
  and	
  an	
  audit	
  trail	
  recorded.	
  
	
  

• Real-­‐time	
  market	
  monitoring	
  -­‐	
  Be	
  able	
  to	
  detect	
  patterns	
  that	
  indicate	
  potentially	
  
dangerous	
  market	
  movements,	
  such	
  as	
  price	
  or	
  volume	
  spikes	
  in	
  a	
  particular	
  
instrument.	
  This	
  involves	
  parallel	
  monitoring	
  of	
  all	
  instruments	
  on	
  all	
  trading	
  
venues.	
  This	
  gives	
  the	
  CFTC	
  an	
  early	
  warning	
  system	
  against	
  potential	
  problems	
  
and	
  the	
  ability	
  to	
  immediately	
  communication	
  with	
  trading	
  venues.	
  

	
  
• Real-­‐time	
  market	
  surveillance	
  -­‐	
  Be	
  able	
  to	
  detect	
  patterns	
  that	
  indicate	
  potential	
  

market	
  abuse,	
  such	
  as	
  insider	
  trading	
  or	
  market	
  manipulation	
  in	
  real-­‐time.	
  
These	
  incidents	
  should	
  be	
  used	
  to	
  create	
  cases,	
  cross-­‐referenced	
  against	
  past	
  
cases	
  and	
  possibly	
  acted	
  upon	
  immediately	
  or	
  later.	
  Real-­‐time	
  visualization	
  is	
  
required	
  to	
  show	
  CFTC	
  surveillance	
  staff	
  what	
  is	
  happening	
  in	
  the	
  market	
  and	
  
where	
  potential	
  abuse	
  hotspots	
  are	
  occurring.	
  

	
  
• Audit	
  Trail	
  and	
  offline	
  investigation	
  -­‐	
  Be	
  able	
  to	
  record	
  market	
  and	
  trade	
  data	
  as	
  

an	
  audit	
  trail	
  and	
  for	
  additional	
  offline	
  analysis	
  and	
  pattern	
  discovery.	
  One	
  use	
  is	
  
to	
  research	
  into	
  the	
  causes	
  of	
  flashcrash-­‐like	
  incidents.	
  Another	
  is	
  to	
  analyze	
  and	
  
collect	
  additional	
  evidence	
  for	
  a	
  particular	
  investigation.	
  A	
  further	
  use	
  is	
  to	
  
discover	
  new	
  patterns	
  of	
  market	
  abuse	
  so	
  they	
  can	
  be	
  added	
  to	
  the	
  database	
  of	
  
patterns	
  and	
  can	
  be	
  looked	
  for	
  in	
  real-­‐time.	
  

	
  
• Improved	
  reporting	
  of	
  OTC	
  products	
  –	
  Although	
  less	
  real-­‐time,	
  it	
  would	
  be	
  

beneficial	
  to	
  improve	
  the	
  accuracy	
  and	
  timeliness	
  of	
  reporting	
  of	
  OTC	
  products.	
  
This	
  reporting	
  could	
  then	
  be	
  incorporated	
  into	
  surveillance	
  and	
  analysis	
  
operations.	
  

	
  
• Inter-­‐regulator	
  visibility	
  -­‐	
  In	
  addition,	
  it	
  would	
  be	
  ideal	
  to	
  have	
  cooperation	
  and	
  

information	
  sharing	
  between	
  other	
  regulators,	
  both	
  within	
  the	
  US	
  and	
  
internationally.	
  For	
  example,	
  there	
  are	
  several	
  trading	
  strategies	
  that	
  may	
  look	
  
like	
  market	
  abuse	
  until	
  you	
  see	
  that	
  they	
  are	
  part	
  of	
  a	
  cross-­‐asset	
  strategy	
  
involving	
  equities	
  and	
  futures.	
  But	
  the	
  SEC	
  and	
  CFTC	
  in	
  isolation	
  might	
  only	
  see	
  
a	
  subset	
  of	
  the	
  trades.	
  

	
  
	
  
The	
  Exchanges	
  and	
  CFTC	
  should	
  agree	
  and	
  ensure	
  each	
  Exchange	
  has	
  implemented	
  
the	
  following:	
  
	
  
• Consistent	
  real-­‐time	
  surveillance	
  and	
  monitoring	
  -­‐	
  A	
  suitable	
  and	
  consistent	
  level	
  

of	
  real-­‐time	
  market	
  surveillance	
  and	
  monitoring	
  for	
  each	
  venue.	
  An	
  Exchange	
  
should	
  be	
  able	
  to	
  detect	
  unusual	
  market	
  patterns,	
  such	
  as	
  price	
  and	
  volume	
  
spikes,	
  for	
  all	
  instruments.	
  They	
  should	
  also	
  be	
  able	
  to	
  detect	
  gaming	
  and	
  
potentially	
  abusive	
  trading	
  patterns	
  in	
  real-­‐time	
  and	
  follow-­‐up	
  with	
  the	
  member	
  
firms	
  involved.	
  



	
  
• A	
  consistent	
  definition	
  of	
  when	
  to	
  invoke	
  circuit	
  breakers	
  -­‐	
  During	
  a	
  market	
  

incident	
  (such	
  as	
  a	
  flashcrash),	
  while	
  circuit	
  breakers	
  might	
  work	
  for	
  some	
  
instruments	
  on	
  some	
  trading	
  venues,	
  liquidity	
  could	
  just	
  transfer	
  to	
  other	
  
venues	
  if	
  they	
  don’t	
  have	
  a	
  consistent	
  definition	
  of	
  when	
  to	
  invoke	
  the	
  circuit	
  
breakers.	
  Also,	
  circuit	
  breakers	
  should	
  ideally	
  work	
  for	
  all	
  instruments	
  at	
  all	
  
times	
  of	
  the	
  day.	
  Additionally	
  the	
  circumstances	
  under	
  which	
  circuit	
  breakers	
  
are	
  initiated	
  should	
  be	
  frequently	
  reviewed.	
  In	
  the	
  equities	
  markets	
  there	
  have	
  
been	
  a	
  number	
  of	
  false	
  positives	
  since	
  the	
  flashcrash,	
  which	
  has	
  disrupted	
  
trading	
  –	
  and	
  the	
  CFTC	
  should	
  consider	
  this	
  in	
  the	
  markets	
  they	
  regulate.	
  

	
  
In	
  addition,	
  brokers	
  should	
  implement	
  the	
  following:	
  
	
  
• Pre-­‐trade	
  risk	
  firewalls	
  –	
  It	
  is	
  highly	
  desirable	
  to	
  analyze	
  each	
  trade	
  in	
  real-­‐time	
  

before	
  it	
  hits	
  the	
  market	
  and	
  if	
  necessary	
  block	
  the	
  trade	
  if	
  it	
  is	
  dangerous	
  or	
  
erroneous.	
  One	
  use	
  is	
  to	
  ensure	
  a	
  trade	
  does	
  not	
  push	
  exposure	
  beyond	
  key	
  
thresholds	
  levels.	
  Another	
  use	
  is	
  to	
  ensure	
  that	
  the	
  trade	
  is	
  not	
  erroneous,	
  such	
  
as	
  a	
  “fat	
  finger”	
  trade.	
  A	
  further	
  use	
  is	
  to	
  ensure	
  that	
  an	
  algorithm	
  hasn’t	
  gone	
  
wild,	
  such	
  as	
  getting	
  stuck	
  in	
  an	
  infinite	
  loop	
  whilst	
  sending	
  out	
  trading	
  signals.	
  
Such	
  risk	
  firewalls	
  are	
  not	
  just	
  useful	
  for	
  internal	
  users	
  but	
  also	
  for	
  clients	
  in	
  a	
  
sponsored	
  access	
  model,	
  to	
  ensure	
  on	
  a	
  client-­‐by-­‐client	
  basis	
  that	
  their	
  pre-­‐trade	
  
risk	
  is	
  under	
  control.	
  Clearly	
  it	
  is	
  key	
  that	
  this	
  pre-­‐trade	
  analysis	
  does	
  not	
  slow	
  
down	
  HFT	
  algos.	
  
	
  

• Internal	
  market	
  surveillance	
  and	
  monitoring	
  –	
  It	
  should	
  be	
  possible	
  to	
  detect	
  
unusual	
  market	
  movements	
  in	
  particular	
  instruments	
  as	
  an	
  early	
  warning	
  
system.	
  Also,	
  each	
  institution	
  should	
  monitor	
  its	
  own	
  trading	
  groups	
  and	
  
customers	
  to	
  ensure	
  that	
  the	
  regulator	
  could	
  not	
  perceive	
  any	
  of	
  its	
  trading	
  
activity	
  as	
  market	
  abuse.	
  

	
  
All	
  of	
  the	
  capabilities	
  mentioned	
  above	
  are	
  possible	
  technologically	
  now.	
  They	
  can	
  
be	
  achieved	
  without	
  disrupting	
  current	
  market	
  operations	
  and	
  without	
  putting	
  
additional	
  load	
  on	
  the	
  market.	
  
	
  
	
  

Data	
  Availability	
  	
  

What	
  types	
  of	
  data	
  (i.e.	
  raw	
  feeds)	
  are	
  Algos	
  and	
  HFT	
  receiving	
  from	
  exchanges	
  and	
  
news	
  organizations	
  versus	
  what	
  is	
  available	
  to	
  other	
  market	
  participants?	
  
	
  
It	
  is	
  not	
  that	
  Algo	
  and	
  HFT	
  traders	
  have	
  privileged	
  access	
  to	
  certain	
  market	
  access	
  
methods	
  compared	
  to	
  what	
  is	
  available	
  to	
  other	
  market	
  participants;	
  it	
  is	
  rather	
  that	
  
they	
  often	
  need	
  as	
  fast	
  access	
  as	
  possible	
  and	
  choose	
  to	
  pay	
  for	
  it.	
  As	
  already	
  
described,	
  HFT	
  shops	
  want	
  to	
  get	
  end-­‐to-­‐end	
  latency	
  as	
  low	
  as	
  possible	
  –	
  so	
  they	
  
will	
  want	
  low	
  latency	
  market	
  data	
  as	
  well	
  as	
  low	
  latency	
  market	
  access.	
  A	
  number	
  of	
  



market	
  data	
  vendors	
  specialize	
  in	
  low	
  latency	
  market	
  data,	
  and	
  some	
  trading	
  
platforms	
  offer	
  direct	
  connectivity	
  to	
  venues,	
  e.g.	
  CBOT	
  or	
  ICE.	
  This	
  access	
  may	
  cost	
  
more	
  than	
  less	
  high	
  performing	
  access	
  routes.	
  
	
  
Similarly	
  for	
  news	
  providers,	
  there	
  are	
  now	
  news	
  offerings	
  from	
  firms	
  such	
  as	
  
Thomson-­‐Reuters	
  and	
  Dow-­‐Jones	
  that	
  offer	
  tagged	
  news	
  for	
  use	
  in	
  HFT.	
  Example	
  
uses	
  for	
  news	
  within	
  algos	
  include	
  correlating	
  news	
  announcements	
  with	
  futures	
  
movements,	
  or	
  trading	
  on	
  news	
  before	
  the	
  markets,	
  e.g.	
  modifying	
  positions	
  on	
  
news	
  of	
  a	
  war,	
  economic	
  event	
  or	
  weather	
  event.	
  Again,	
  these	
  feeds	
  cost	
  extra	
  and	
  
are	
  only	
  useful	
  if	
  you	
  are	
  in	
  the	
  HFT	
  space.	
  In	
  fact	
  trading	
  on	
  news	
  in	
  HFT	
  is	
  still	
  a	
  
fairly	
  obscure	
  practice	
  that	
  still	
  only	
  a	
  handful	
  of	
  firms	
  are	
  involved	
  in.	
  
	
  
Less	
  high	
  frequency	
  participants	
  may	
  gain	
  access	
  to	
  the	
  market	
  through	
  analysis	
  
and	
  trading	
  tools,	
  such	
  as	
  Bloomberg	
  or	
  CQG	
  –	
  which	
  have	
  their	
  own	
  integrated	
  
market	
  data	
  and	
  news	
  delivery.	
  
	
  
It	
  is	
  “horses	
  for	
  courses”	
  when	
  deciding	
  your	
  needs	
  in	
  terms	
  of	
  market	
  data	
  and	
  
news.	
  It	
  is	
  certainly	
  not	
  some	
  secret	
  monopoly	
  by	
  Algo	
  and	
  HFT	
  firms.	
  But	
  there	
  is	
  a	
  
cost	
  differential	
  in	
  terms	
  of	
  being	
  able	
  to	
  acquire	
  the	
  highest	
  frequency	
  feeds.	
  
	
  
	
  

Technological	
  Challenges	
  

What	
  are	
  the	
  technological	
  challenges	
  or	
  limitations	
  to	
  Algo	
  and	
  HFT?	
  
	
  
When	
  describing	
  the	
  cutting	
  edge	
  of	
  technology,	
  the	
  phrase	
  “rocket	
  science”	
  is	
  
commonly	
  used.	
  Ironically	
  rocket	
  science	
  hasn’t	
  evolved	
  much	
  in	
  60	
  years,	
  whereas	
  
algorithmic	
  trading	
  technology	
  evolves	
  daily.	
  In	
  Algo	
  and	
  HFT	
  the	
  barriers	
  of	
  today,	
  
described	
  below,	
  will	
  quickly	
  be	
  breached	
  and	
  new	
  barriers	
  will	
  emerge.	
  
	
  
Some	
  of	
  the	
  barriers	
  that	
  are	
  being	
  hit	
  or	
  approached	
  by	
  current	
  generation	
  Algo	
  
and	
  HFT	
  technology	
  include	
  the	
  following:	
  
	
  
• Transmissions	
  speed	
  (speed	
  of	
  light)	
  -­‐	
  For	
  those	
  engaged	
  in	
  pure	
  latency	
  

arbitrage,	
  the	
  barriers	
  of	
  physics	
  are	
  providing	
  restrictions	
  in	
  terms	
  of	
  their	
  
ability	
  to	
  access	
  and	
  respond	
  to	
  market	
  data.	
  Some	
  firms	
  are	
  drilling	
  holes	
  
through	
  walls	
  just	
  to	
  shorten	
  the	
  piece	
  of	
  wire	
  that	
  connects	
  them	
  to	
  certain	
  
trading	
  markets.	
  Other	
  firms	
  are	
  turning	
  to	
  custom	
  hardware	
  to	
  assist	
  them	
  in	
  
pumping	
  the	
  data	
  in	
  quickly.	
  Einstein	
  proved	
  we	
  cannot	
  exceed	
  the	
  speed	
  of	
  light	
  
in	
  transmission	
  speeds	
  but	
  in	
  terms	
  of	
  data	
  throughput,	
  data	
  and	
  processing	
  
parallelism	
  offer	
  potential	
  for	
  increasing	
  throughput	
  considerably.	
  

	
  
• Analysis	
  speed	
  –	
  Further	
  to	
  the	
  previous	
  point,	
  keeping	
  real-­‐time	
  analysis	
  up	
  

with	
  the	
  rates	
  of	
  data	
  throughput	
  is	
  also	
  becoming	
  challenging.	
  The	
  pattern	
  
analysis	
  within	
  algorithms	
  is	
  more	
  complex	
  than	
  just	
  getting	
  the	
  data	
  in	
  –	
  



because	
  complex	
  analytics	
  are	
  being	
  done	
  rather	
  than	
  just	
  shipping	
  data.	
  The	
  
OPRA	
  feed,	
  one	
  leading	
  benchmark	
  of	
  analysis	
  requirements,	
  has	
  exceeded	
  1	
  
million	
  events	
  per	
  second.	
  Technologies	
  like	
  Complex	
  Event	
  Processing,	
  
combined	
  with	
  parallelization	
  techniques,	
  such	
  as	
  grid	
  computing,	
  need	
  to	
  
continue	
  to	
  evolve	
  to	
  keep	
  up.	
  

	
  
• Trading	
  venue	
  performance	
  –	
  While	
  trading	
  venues	
  continue	
  to	
  consider	
  

performance	
  enhancements,	
  increased	
  loads	
  can	
  hinder	
  their	
  performance.	
  We	
  
have	
  already	
  seen	
  performance	
  hits	
  at	
  major	
  exchanges	
  under	
  high	
  load.	
  If	
  algos	
  
are	
  allowed	
  to	
  continue	
  to	
  modify	
  orders	
  without	
  restriction	
  then	
  the	
  load	
  on	
  
trading	
  venues	
  will	
  continue	
  to	
  increase,	
  requiring	
  continued	
  technology	
  
enhancement.	
  

	
  
• Keeping	
  up	
  with	
  global	
  market	
  fragmentation	
  –	
  For	
  a	
  global	
  cross-­‐asset	
  trading	
  

organization,	
  keeping	
  up	
  with	
  new	
  markets	
  is	
  an	
  expensive,	
  complex	
  and	
  time-­‐
consuming	
  endeavor.	
  However,	
  the	
  promise	
  of	
  “mining	
  new	
  seams	
  of	
  gold	
  before	
  
other	
  prospectors	
  arrive”	
  is	
  enticing.	
  	
  

	
  
• Finding	
  new	
  trading	
  opportunities	
  –	
  Continuously	
  evolving	
  trading	
  operations	
  

and	
  looking	
  for	
  new	
  trading	
  opportunities	
  is	
  challenging.	
  Complex	
  research	
  tools	
  
and	
  human	
  processes	
  to	
  help	
  discover	
  new	
  trading	
  opportunities	
  must	
  continue	
  
to	
  evolve.	
  

	
  
• Skills	
  shortage	
  –	
  In	
  order	
  to	
  compete,	
  many	
  trading	
  strategies	
  are	
  becoming	
  more	
  

and	
  more	
  complex.	
  For	
  example,	
  a	
  HFT	
  algo	
  that	
  trades	
  on	
  cross-­‐asset,	
  cross-­‐
border	
  aggregated	
  liquidity.	
  The	
  human	
  intellectual	
  property	
  and	
  skills	
  in	
  
putting	
  together	
  such	
  scenarios	
  and	
  the	
  integrated	
  technology	
  to	
  support	
  them	
  
is	
  in	
  short	
  supply.	
  

	
  
• Cost	
  barriers	
  –	
  To	
  compete	
  at	
  the	
  highest	
  level	
  in	
  Algo	
  and	
  HFT	
  is	
  costly.	
  

However,	
  as	
  already	
  described	
  it	
  is	
  possible	
  to	
  get	
  in	
  the	
  game	
  for	
  lower	
  cost.	
  
	
  
	
  

Conclusions	
  
Algo	
  and	
  HFT	
  are	
  highly	
  beneficial	
  to	
  the	
  US	
  and	
  global	
  economy.	
  Restricting	
  their	
  
usage	
  is	
  dangerous.	
  However,	
  best	
  practices	
  and	
  guidance	
  to	
  trading	
  institutions	
  is	
  
needed.	
  Mandated	
  pre-­‐trade	
  risk	
  practices,	
  along	
  with	
  market	
  surveillance	
  and	
  
monitoring	
  are	
  needed	
  to	
  protect	
  against	
  the	
  potential	
  of	
  further	
  flash	
  crashes	
  and	
  
algos	
  going	
  wild	
  -­‐	
  both	
  of	
  which	
  negatively	
  influence	
  market	
  performance	
  and	
  
reputation.	
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1 Introduction

The impact of high frequency trading (HFT) on the U.S. equity markets has
received considerable attention in the wake of the financial crisis of 2008. It
has been asked whether the increase in the amount of automated trading as
a percentage of overall trading activity over the past several years has been
accompanied by degraded measures of market health such as liquidity, trading
costs, volatility, etc. Uninformed answers to these important questions have the
potential to influence policy makers toward actions that are not beneficial to
the vitality and efficient functioning of financial markets in the U.S.

This work presents some evidence showing that the U.S. equity markets
appear to have become more efficient with tighter spreads and greater liquidity
over the past several years; a period that has seen a sizable increase in the
prevalence of HFT, and a period during which there has been coincident growth
in automation and speed on many exchanges. It has been suggested that HFT
now accounts for over half of U.S. equity share volume [1]. With such a large
presence in the market, it is important to understand if there are any adverse
effects caused by such activity. While the existence of a causal relationship is
not proven, evidence is presented which suggests that the U.S. markets have
improved in several respects as HFT activity has grown.

One measure of efficiency investigated is the bid-ask spread and it is expected
that the presence of more participants, algorithmic and otherwise, will drive
spreads down due to competition, thereby decreasing costs to other investors.
The results presented in this paper confirm the results of many other studies,
showing that bid-ask spreads have come down over time for a broad range of
stocks.

Another measure of efficiency is liquidity, representing the ability of investors
to obtain their desired inventories with minimal price impact. Again, it is ex-
pected that more participants implies a greater amount of liquidity in the mar-
kets, a benefit to investors. This appears to be the case as this paper confirms
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the results of other papers demonstrating an increase in available liquidity over
time.

It was shown by Samuelson in [2] that if a stock price is efficient, i.e., the
price is fairly valued with all public information, then it must follow a martingale
process. As a consequence, an efficient price exhibits no serial autocorrelation,
either positive (momentum) or negative (mean-reversion). Measurements are
made in this paper that test how closely stock prices resemble a random walk,
and improvements are seen for all segments.

A variance ratio test was developed by Lo and Mackinlay in [3] which makes
use of the fact that in an efficient market, the variance per unit time of the
price of a stock should be constant. This allows ratios of variances over different
time horizons to be taken and compared with theoretical expectations where,
in an efficient market, these tests would show that there is little or no serial
autocorrelation in prices. Another advantage of this type of test is that it
does not depend on a particular order of serial autocorrelation, only whether
any such autocorrelation is present. These tests, a novel contribution of this
paper, demonstrate that for all the data-sets investigated, there is an overall
improvement in efficiency in prices over time.

The data-sets used in this study are the Russell 1000 components, consisting
of 1000 large-cap and mid-cap stocks, and the Russell 2000 components, con-
sisting of 2000 small-cap stocks. The set of components are taken as of Q4 2009,
and no attempt is made to correct for survivor bias, though it may be argued
that the nature of this study is not sensitive to such effects.

Additionally, each index is partitioned into two sets; NYSE-listed stocks and
NASDAQ-listed stocks. For much of the time period studied, NASDAQ-listed
stocks traded primarily on automated, electronic exchanges while NYSE-listed
stocks have transitioned from being primarily traded manually on the NYSE to
being traded on a more competitive, automated group of electronic exchanges.
Therefore the data essentially represents four distinct subsets of stocks, at least
from an historical context: large-cap stocks largely traded automatically (ap-
proximately 200 NASDAQ-listed stocks in the Russell 1000), large-cap stocks
largely traded manually (approximately 800 NYSE-listed stocks in the Rus-
sell 1000), small-cap stocks largely traded automatically (approximately 1300
NASDAQ-listed stocks in the Russell 2000), and small-cap stocks largely traded
manually (approximately 700 NYSE-listed stocks in the Russell 2000). This par-
tition allows comparisons to be made that help more clearly identify the impact
of automation and technology advances on the health of the market.

The raw data is sampled at 1 second intervals for each stock during the
period Jan 1, 2006 to Dec 31, 2009 inclusive, representing 16 quarters of data.
The first 10 minutes and last 10 minutes of each day are omitted to prevent
opening and closing activities from influencing the results. Inside values are
used across the NASDAQ, NYSE, NYSE ARCA and BATS exchanges. This
represents a significant fraction of all shares traded in the U.S. and so is taken
to be representative of overall market activity.

With this data-set a series of statistical tests and measurements are run,
designed to reflect the health of the market. Spreads, available liquidity, and
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transient volatility in the form of variance ratio tests are presented here as these
are commonly cited metrics of market efficiency and market quality.

2 Bid-Ask Spreads

Spreads are a cost to trading and, all else being equal, smaller spreads are
evidence of a better cost structure for investors. Conversely, market makers
and other liquidity providers earn profits through the spread. To that extent
smaller spreads imply not only smaller revenues for market makers but also that
these participants, by quoting smaller spreads, are more competitive; a sign of
a healthy market.

Bid-ask spreads are presented as the mean absolute spread of each of the
components of the index, where the absolute spread is defined as the best ask
price less the best bid price. There are other common ways to present bid-ask
spread data including the use of relative spreads. This formulation is meant
to more directly reflect transaction costs for investors caused by the bid-ask
spread. Market makers and other liquidity providers commonly adjust their
quotes based on market volatility in order to compensate for their increased
risk of holding inventory [4]. Therefore a volatility adjustment is commonly
done to remove the impact of volatility from spreads, typically making it easier
to spot trends in spreads over time. Dollar-value weighting is also sometimes
used in an effort to better reflect costs of the spread paid by investors. Equal
weighting is chosen here because many of the largest and most liquid stocks are
pinned at a spread of one penny.

Each of these adjustments will alter the results to some degree though over-
all trends are expected to remain, and this is confirmed in the appendix which
contains some results with these adjustments made. Also available in the ap-
pendix are some bid-ask spread results for the NASDAQ-100 index, consisting
of many of the largest stocks listed on the NASDAQ.

Figure 1 presents the mean of the absolute spread over time for the Russell
1000 stocks partitioned into its NYSE-listed and NASDAQ-listed components.
This is done to try to isolate differences in behavior over the period studied that
may be attributable to structural changes on each of these exchanges. Both
groups have seen a reduction in spreads over the period investigated, dropping
by about 1.5 pennies for the NYSE-listed stocks and about 1 penny for the
NASDAQ-listed stocks. By the end of 2009 it appears the the mean spread of
the two groups has converged to approximately the same value, something that
could not be said previously.

It is known that the rate of adoption of automated trading on NYSE-listed
stocks lagged behind that of NASDAQ-listed stocks. As the NYSE moved to an
electronic system to catch up technologically with the NASDAQ, and as other
electronic venues began taking market share from the NYSE, spreads in the
Russell 1000 dropped more dramatically for the NYSE-listed stocks than the
NASDAQ-listed stocks. This also suggests a relationship between the entrance
of algorithmic trading with a reduction in spreads, something that is noted for
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Figure 1: Mean bid-ask spread for Russell 1000

Figure 2: Mean bid-ask spread for Russell 2000

4



the German DAX in [5].
The same information for the Russell 2000 index is presented in Figure 2.

Like the Russell 1000, these stocks have seen a reduction in mean spreads by
about a penny, with the NYSE-listed symbols showing a more dramatic reduc-
tion than the NASDAQ-listed symbols.

3 Available Liquidity

Liquidity is an important part of a vital market. It is often loosely defined
as the ability of participants to trade the amount that they wish at the time
they wish. One measure of liquidity is the amount of size offered for sale or
for purchase by market makers and other liquidity providers at a given point in
time. If more shares are available to be bought and sold at any given time, then
market participants have a greater ability to get into or out of positions based
on their needs or desires and are less dependent on either waiting for sufficient
size to become available or to seek an alternative execution venue.

Available liquidity is measured as the dollar value available to buy or sell at
any instant in time at the inside bid and ask, and time averages over an entire
quarter are taken. Each stock in an index is weighted by its capitalization
reported for the quarter to produce a single capitalization-adjusted available
liquidity metric. The motivation for weighting by capitalization is that it more
closely reflects the available fraction of a company’s total value that can be
transacted at any given time which may be more representative of the limitations
to investors. Additional available liquidity data is presented in the appendix,
including results for the NASDAQ-100.

Figure 3 presents the adjusted available liquidity for the Russell 1000 compo-
nents partitioned into NYSE-listed and NASDAQ-listed stocks. Between 2006
and the end of 2009, the available liquidity of both groups of stocks increased
significantly, by about a factor of two, though all of that gain appears to have
taken place in 2009. Similar results are seen for the two groups of stocks in the
Russell 2000 which is shown in Figure 4.

It is plausible that the increase in liquidity can be explained, at least in part,
by the presence of HFT participants. Since the data used in this work is sampled
at a high rate, one can also claim that this liquidity measure is representative
of the immediacy that is available to market participants. This immediacy is
a type of option that is available to market participants providing them with
more flexibility than may otherwise be available.
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Figure 3: Mean available liquidity for Russell 1000

Figure 4: Mean available liquidity for Russell 2000
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4 Market Efficiency Tests

There exists a large body of research devoted to tests of market efficiency. In this
context, efficiency typically refers to the degree to which the price time-series of a
stock resembles a random walk. The theoretical foundation for this was laid out
by Samuelson in [2] which proves that a properly anticipated stock price should
fluctuate randomly with no serial autocorrelation. Pioneering work in this area
in the form of a variance ratio test was presented by Lo and Mackinlay in [3], in
which they show with some level of statistical confidence that the NYSE stock-
price time-series do not appear similar to a random walk, suggesting inefficiency
in the markets. The data used in their paper is sampled daily and ends in 1988,
prior to a significant number of structural and regulatory changes that have
dramatically changed the nature of U.S. equity markets.

If stock price time-series truly followed random walks, it is expected that the
variance ratio computations would have values close to one. A variance ratio’s
deviation from unity can then be considered to be proportional to the amount
of inefficiency present in that stock or index. Values greater than one imply a
momentum process, equivalently a positive serial autocorrelation, while values
less than one imply mean-reversion, or negative serial autocorrelation.

Subsequent research extended the variance ratio tests in [3] to provide al-
ternative methods to test market efficiency. In particular Chow and Denning
in [6] extend the work of [3] to provide a more statistically powerful test pro-
cedure and it is this “Chow-Denning” test that is used as a metric of market
efficiency in this section. To the best of the authors’ knowledge, such tests have
not previously been applied to data sampled at a high rate as is done here.

It is important to note that at this sampling rate micro-structural effects are
expected to be present. In particular, bid-ask bounce and statistical influences
caused by the discrete nature of price values will tend to skew the results toward
appearing mean-reverting. These effects are expected at high sampling rates and
are expected to decay as the sampling rate is decreased. However, for a given
sampling interval, the effect is expected to be roughly constant over time, and
thus the interesting aspect of the results is how they have changed over time
and whether they have converged toward a value of one. An attempt has been
made in the variance calculations to account for the discrete price values and
midpoint prices are used rather than last trade prices to minimize the effect of
bid-ask bounce. More details are available in the appendix, along with some
results based on last trade prices.

Raw variance ratio tests are applied to the Russell 1000 and Russell 2000,
partitioned into NYSE-listed and NASDAQ-listed stocks. Three ratios are cho-
sen to be representative of what may be typical HFT holding periods; 10 seconds
over 1 second, 60 seconds over 10 seconds, and 600 seconds over 10 seconds.

Figures 5 and 6 show the raw variance ratios of 10 seconds over 1 second
for midpoint price data from the Russell 1000 and 2000, respectively. These
indexes are partitioned into NYSE-listed and NASDAQ-listed stocks. At this
high frequency, it is seen that the Russell 1000, NASDAQ-listed stocks show a
high degree of efficiency, and have been relatively efficient throughout the entire

7



period investigated, with some improvement seen over time. As these stocks
have largely been traded electronically for the entire period, such results are
expected. The NYSE-listed components, by contrast, show a relatively large
amount of inefficiency in 2006, but have increased to over 0.95 by 2009 and now
appear to be at least as efficient as the NASDAQ-listed stocks.

The Russell 2000 index in Figure 6 shows the same general trends, though the
overall efficiency is lower than the Russell 1000. This is to be expected since the
smaller-cap stocks of the Russell 2000 do not have the same amount of trading
activity as large-cap stocks. The NYSE-listed symbols show a greater degree of
improvement in efficiency than the NASDAQ-listed symbols, again coinciding
with improvements in automation and increased participation in these stocks
by automated trading firms.

The same results are presented for the variance ratios of 1 minute over 10
seconds in Figures 7 and 8 for the Russell 1000 and Russell 2000, respectively.
Similar conclusions hold when comparing these results with the 10 seconds over
1 second variance ratios. The degree to which the variance ratio of NYSE-listed
stocks in the Russell 1000 has improved of the period studied is dramatic, and
has largely converged to be identical to the NASDAQ-listed components of the
index. A similar trend is seen with the Russell 2000 components.

A large variance ratio of 10 minutes over 10 seconds is presented to provide
a picture of market efficiency over larger time-scales. Figures 9 and 10 show the
results for the Russell 1000 and Russell 2000, respectively, and the same general
trends seen in the previous plots of variance ratios are present in these figures.

The Chow-Denning method tests the null hypothesis that a price time-series
is drawn from a random walk, and produces a single test statistic. This value
can be compared to a threshold for a certain significance level. In this study
5% was chosen as the significance level.

The test was applied over each of the 16 quarters, individually to each stock
in the data-set with the input to the test being the logarithm of the midpoint
price. Sampling was done at 10 minute intervals and 10 second intervals. At
5% significance, if this test were run on 100 truly random time-series, one would
expect to see about 5 test outcomes reject the null hypothesis. That is to say,
due to the statistical nature of this test, it may produce false positives about
5% of the time.

Results for the 10 minute sampling Chow-Denning tests are presented in
Figures 11 and 12 for the Russell 1000 and 2000 data-sets, respectively. These
figures show the fraction of stocks in the index that the Chow-Denning test
reported as not being drawn from a random walk at a 5%-significance level.
Figure 11 shows that at 10 minute sampling, the number of such occurrences
has dropped over time and has largely been below 5% since the beginning of
2009, suggesting that there is no statistically significant inefficiencies at this
sampling interval that this test detects. The NYSE-listed stocks appear to have
a more dramatic improvement, in agreement with the variance ratio results
presented above.

Similar results are seen for the Russell 2000 in Figure 12 with a general
improvement in efficiency over the time period investigated although it appears
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Figure 5: Variance Ratios, Russell 1000, 10 seconds / 1 second

Figure 6: Variance Ratios, Russell 2000, 10 seconds / 1 second
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Figure 7: Variance Ratios, Russell 1000, 1 minute / 10 seconds

Figure 8: Variance Ratios, Russell 2000, 1 minute / 10 seconds
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Figure 9: Variance Ratios, Russell 1000, 10 minute / 10 seconds

Figure 10: Variance Ratios, Russell 2000, 10 minute / 10 seconds
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Figure 11: Chow-Denning test results for the Russell 1000, 10 minute sampling

Figure 12: Chow-Denning test results for the Russell 2000, 10 minute sampling
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that there remains some degree of inefficiency at this time scale that the Chow-
Denning test is detecting. As expected, the large-cap stocks in the Russell 1000
exhibit a smaller number of significant events than the Russell 2000.

A smaller sampling interval of 10 seconds is also used for the Chow-Denning
tests, and the results of these computations are presented in Figures 13 and 14
for the Russell 1000 and Russell 2000, respectively. At this sampling rate the
impact of microstructural noise is expected to have a more significant impact
than at 10 minute sampling. Despite a higher degree of apparent inefficiency,
Figure 13 demonstrates that even at such fine sampling, the Russell 1000 appears
to have improved over the four years studied, and that the NYSE-listed symbols
have shown a more dramatic improvement in that time, largely converging with
the NASDAQ-listed symbols. Similar observations are made for the Russell
2000 index in Figure 14.

An alternative interpretation of these results is that of an increase in the
speed of mean-reversion over time. As mentioned, mean-reversion is present in
this data due in part to micro-structural effects, and as the rate of trading and
market activity increases, the impact of such noise on these variance ratio-based
tests become less prevalent. Therefore one can conjecture that the decrease in
the Chow-Denning test statistics may be as a result of an increased rate of
reversion of prices to their mean. This is also an indication of an increasing
competitive landscape and increasing efficiency in the market.

13



Figure 13: Chow-Denning test results for the Russell 1000, 10 second sampling

Figure 14: Chow-Denning test results for the Russell 2000, 10 second sampling
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5 Summary

The presented data is suggestive that the U.S. equity markets have become more
liquid and efficient over the past four years, despite macro-economic shocks. As
the ratio of HFT activity to total market activity has grown, there appears
to be no evidence that short-term volatility, liquidity or spreads have risen
for the bulk of market participants. To the contrary, the evidence presented
here suggests a continued improvement in each of these factors, implying a
sympathetic relationship between HFT and the health of the overall markets.

The partitioning of data into the Russell 1000 and Russell 2000 shows that
there has generally been a larger degree of improvement in efficiency metrics in
the Russell 1000. The difference in trends observed between NYSE-listed and
NASDAQ-listed stocks also supports the hypothesis that increased automation
and the presence of HFT that has come with it has improved the market quality
metrics investigated in this paper.
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6 Appendix

6.1 Bid-Ask Spreads

Absolute spreads are computed as follows. An individual stock i has a spread
at time t of Si(t) = ai(t)− bi(t). The spread over a quarter q is defined as

〈Si(q)〉 =

∑
t∈q Si(t)∑

t∈q 1
.

The spread SN
q over an index N is the weighted average over all components,

where wi represents the weighting of stock i. The spread is then

SN
q =

∑
i∈N wi 〈Si(q)〉∑

i∈N wi
.

The choice of equal weighting sets all wi = 1. Dollar value weighting is de-
termined by setting the weight for each stock to the total dollar value of all
transactions for that stock in the quarter.

Relative spread can be computed in a similar manner, with the relative
spread SR(t)i = a(t)i−b(t)i

p(t)i
replacing the absolute spread above, and where pi(t)

represents price. A common adjustment made to bid-ask spreads is a volatility
adjustment [4]. The VIX is used for this purpose and its value relative to the
mean of its value over the time period studied is chosen as the deflator. The
value of the VIX over the period studied is given in Figure 15.

VIX-adjusted spread data is presented in Figures 16 and 17 showing the
Russell 1000 and Russell 2000 relative spreads over time. Similar to the results
presented in the main body of this paper, the relative spreads have been stable
or falling over time, with a much larger reduction seen when adjusting for the
VIX.

For comparison, spread data is also presented for the NASDAQ-100 index.
Absolute spreads, both unadjusted and VIX-adjusted are given in Figure 18.
The trend for this index is consistent with that seen in the Russell data-sets.
Relative spreads are presented in a number of ways in Figure 19 and these
adjustments do not change the overall trends presented in the body of the text.

6.2 Available Liquidity

The available liquidity for a stock i at time t is given as

Li(t) = pi(t)
(
sa

i (t) + sb
i (t))

)
,

where sa
i (t) and sb

i (t) are the inside size at the ask and bid, respectively. In a
quarter q, the average available liquidity of a stock is

〈Li(q)〉 =

∑
t∈q Li(t)∑

t∈q 1
.

16



Figure 15: Quarterly VIX prices

Figure 16: Mean bid-ask spread for Russell 1000, VIX-adjusted
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Figure 17: Mean bid-ask spread for Russell 2000, VIX-adjusted

Figure 18: Absolute equal-weighted bid-ask spread for NASDAQ 100
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Figure 19: Bid-ask spread for NASDAQ 100

The available liquidity over an index N is the weighted average over all compo-
nents, such that

LN
q =

∑
i∈N wi 〈Li(q)〉∑

i∈N wi
,

where wi is the weighting for stock i. A common adjustment made is a capital-
ization adjustment, which is done by setting wi to the market capitalization of
a stock i in quarter q.

The main body of this paper presents results for the Russell 1000 and Russell
2000. For comparison, the available liquidity for the NASDAQ-100 is presented
in Figure 20, showing both a capitalization-weighting and an equal-weighting.
In both cases, the general trend of increasing available liquidity over the period
studied is seen.

6.3 Market Efficiency

The methodology used to compute the variance ratio values follows that pre-
sented in [3]. In particular, equations (12a) and (12b) are used. Sheppard’s
correction [7] is applied to the variance estimates in order to reduce the discrete
values of prices (log-midpoint prices) used in the computation.

The raw variance ratio ri for a stock i with time-ratio D is given by

ri =
vs1

i

Dvs2
i

,

where vs1 is the variance for sampling rate s1 and vs2 is the variance for sampling
rate s2 and by convention, s1

s2
= D > 1.
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Figure 20: Mean available liquidity for NASDAQ 100

In order to gain a sense of the impact of bid-ask bounce and spreads on
variance ratios, Figure 21 presents the raw variance ratios for the NASDAQ 100
using the last traded price and the midpoint price in the same figure. From
the left panel, showing a fine sampling rate, it is seen that the impact of the
bid-ask bounce on last trade prices results in a smaller variance ratio than
when midpoint prices are used. As the sampling rate is decreased to longer
time periods, the impact of bid-ask bounce becomes less pronounced. This is
demonstrated in the right panel of Figure 21, where the difference between the
variance ratios using trade prices and midpoint prices is much smaller.
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Figure 21: Mean Variance Ratios of Midpoint Prices vs. Trade Prices, NASDAQ
100. Left: 10 seconds / 1 second. Right: 1 minute / 10 seconds
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despite the apparent correlation of algorithmic trades, there is no evident causal relationship between
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1 Introduction

The use of algorithmic trading, where computer algorithms directly manage the trading process at high

frequency, has become common in major �nancial markets in recent years, beginning in the U.S. equity

market more than 15 years ago. There has been widespread interest in understanding the potential impact

of algorithmic trading on market dynamics, as some analysts have highlighted the potential for improved

liquidity and more e¢ cient price discovery while others have expressed concern that it may be a source of

increased volatility and reduced liquidity, particularly in times of market stress. A number of articles and

opinion pieces on the topic have recently appeared in the press, with most decrying practices used by some

algorithmic traders in the equity market, and there have been calls for regulatory agencies in the United States

and Europe to begin investigations.1 Despite this interest, there has been very little formal empirical research

on algorithmic trading, primarily because of a lack of data where algorithmic trades are clearly identi�ed.

A notable exception is a recent paper by Hendershott, Jones, and Menkveld (2007), who get around the

data constraint by using the �ow of electronic messages on the NYSE as a proxy for algorithmic trading.

They conclude that algorithmic trading on the NYSE, contrary to the pessimists� concerns, likely causes

an improvement in market liquidity.2 In the foreign exchange market, there has been no formal empirical

research on the subject. The adoption of algorithmic trading in the foreign exchange market is a far more

recent phenomenon than in the equity market, as the two major interdealer electronic trading platforms

only began to allow algorithmic trades a few years ago. Growth in algorithmic trading has been very rapid,

however, and a majority of foreign exchange transactions in the interdealer market currently involve at least

one algorithmic counterparty.

In algorithmic trading (AT), computers directly interface with trading platforms, placing orders without

immediate human intervention. The computers observe market data and possibly other information at very

high frequency, and, based on a built-in algorithm, send back trading instructions, often within milliseconds.

A variety of algorithms are used: for example, some look for arbitrage opportunities, including small dis-

crepancies in the exchange rates between three currencies; some seek optimal execution of large orders at

the minimum cost; and some seek to implement longer-term trading strategies in search of pro�ts. Among

the most recent developments in algorithmic trading, some algorithms now automatically read and interpret

economic data releases, generating trading orders before economists have begun to read the �rst line.
1See, for instance, �Rewarding Bad Actors,�by Paul Krugman, New York Times, August 3, 2009, �High-Frequency Trading

Grows, Shrouded in Secrecy,� Time, August 5, 2009, and �Don�t Set Speed Limits on Trading,� by Arthur Levitt Jr., Wall
Street Journal, August 18, 2009.

2We also note a paper by Hasbrouck (1996) on program trading, where he analyzes 3 months of data where program trades
can be separately identi�ed from other trades. He concludes that both types of orders have an approximately equivalent impact
on prices. Algorithmic trading is not exactly equivalent to program trading, though it is a close cousin. In principle, a program
trade could be generated by a trader�s computer and then the trade conducted manually by a human trader. Our de�nition of
AT refers to the direct interaction of a trader�s computer with an electronic trading platform, that is the automated placement
of a trade order on the platform.
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The extreme speed of execution that AT allows and the potential that algorithmic trades may be highly

correlated, perhaps as many institutions use similar algorithms, have been cited as reasons for concerns that

AT may generate large price swings and market instability. On the other hand, the fact that some algorithms

aim for optimal execution at a minimal price impact may be expected to lower volatility. In this paper, we

investigate whether algorithmic (�computer�) trades and non-algorithmic (�human�) trades have di¤erent

e¤ects on the foreign exchange market. We �rst ask whether the presence of computer trades causes higher or

lower volatility and whether computers increase or reduce liquidity during periods of market stress. We then

study the relative importance of human and computer trades in the process of price discovery and re-visit

the assumption that liquidity providers are �uninformed.�

We formally investigate these issues using a novel dataset consisting of two years (2006 and 2007) of

minute-by-minute trading data from EBS in three currency pairs: the euro-dollar, dollar-yen, and euro-yen.

The data represent the vast majority of global spot interdealer transactions in these exchange rates. An

important feature of the data is that the volume and direction of human and computer trades each minute

are explicitly identi�ed, allowing us to measure their respective impacts.

We �rst show some evidence that computer trades are more highly correlated with each other than human

trades, suggesting that the strategies used by computers are not as diverse as those used by humans. But

the high correlation of computer trades does not necessarily translate into higher volatility. In fact, we �nd

next that there is no evident causal relationship between AT and increased market volatility. If anything,

the presence of more algorithmic trading appears to lead to lower market volatility, although the economic

magnitude of the e¤ect is small. In order to account for the potential endogeneity of algorithmic trading with

regards to volatility, we instrument for the actual level of algorithmic trading with the installed capacity for

algorithmic trading in the EBS system at a given time.

Next, we study the relative provision of market liquidity by computers and humans at the times of the

most in�uential U.S. macroeconomic data release, the nonfarm payroll report. We �nd that, as a share of

total market-making activity, computers tend to pull back slightly at the precise time of the release but then

increase their presence in the following hour. This result suggests that computers do provide liquidity during

periods of market stress.

Finally, we estimate return-order �ow dynamics using a structural VAR framework in the tradition of

Hasbrouck (1991a). The VAR estimation provides two important insights. First, we �nd that human order

�ow accounts for much of the long-run variance in exchange rate returns in the euro-dollar and dollar-yen

exchange rate markets, i.e., humans appear to be the �informed�traders in these markets. In contrast, in the

euro-yen exchange rate market, computers and humans appear to be equally �informed.�In this cross-rate,

we believe that computers have a clear advantage over humans in detecting and reacting more quickly to
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triangular arbitrage opportunities, where the euro-yen price is brie�y out of line with prices in the euro-dollar

and dollar-yen markets. Second, we �nd that, on average, computers or humans that trade on a price posted

by a computer do not impact prices quite as much as they do when they trade on a price posted by a human.

One possible interpretation of this result is that computers tend to place limit orders more strategically

than humans do. This empirical evidence supports the literature that proposes to depart from the prevalent

assumption that liquidity providers in limit order books are passive.3

The paper proceeds as follows. In Section 2 we introduce the EBS exchange rate data, describing the

evolution over time of algorithmic trading and the pattern of interaction between human and algorithmic

traders. In Section 3 we study the correlation of algorithmic trades. In Section 4 we analyze the relationship

between algorithmic trading and exchange rate volatility. In Section 5 we discuss the provision of liquidity

by computers and humans at the time of a major data release. In Section 6 we report the results of the

high-frequency VAR analysis. We conclude in Section 7. Some robustness results are presented in the

Appendix.

2 Data description

Today, two electronic platforms process the vast majority of global interdealer spot trading in the major

currency pairs, one o¤ered by Reuters, and one o¤ered by EBS.4 These platforms, which are both electronic

limit order books, have become essential utilities for the foreign exchange market. Importantly, trading in

each major currency pair has over time become very highly concentrated on only one of the two systems. Of

the most traded currency pairs, the top two, euro-dollar and dollar-yen, trade primarily on EBS, while the

third, sterling-dollar, trades primarily on Reuters. As a result, the reference price at any moment for, say,

spot euro-dollar, is the current price on the EBS system, and all dealers across the globe base their customer

and derivative quotes on that price. EBS controls the network and each of the terminals on which the trading

is conducted. Traders can enter trading instructions manually, using an EBS keyboard, or, upon approval by

EBS, via a computer directly interfacing with the system. The type of trader (human or computer) behind

each trading instruction is recorded by EBS, allowing for our study.5

We have access to AT data from EBS from 2003 through 2007. We focus on the sample from 2006 and

2007, because, as we will show, algorithmic trades were a very small portion of total trades in the earlier years.

3For example, Chakravarty and Holden (1995), Kumar and Seppi (1994), Kaniel and Liu (2006), and Goettler, Parlour and
Rajan (2007) allow informed investors to use both limit and market orders. Bloom�eld, O�Hara and Saar (2005) argue that
informed traders are natural liquidity providers, and Angel (1994) and Harris (1998) show that informed investors can optimally
use limit orders when private information is su¢ ciently persistent.

4EBS has been part of the ICAP group since 2006.
5EBS uses the name �automated interface� (AI) to describe trading activity directly generated by a computer, activity we

call AT.
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In addition to the full 2006-2007 sample, we also consider a sub-sample covering the months of September,

October, and November of 2007, when algorithmic trading played an even more important role than earlier

in the sample.6 We study the three most-traded currency pairs on the EBS system: euro-dollar, dollar-yen,

and euro-yen.

The quote data, at the one-second frequency, consist of the highest bid quote and the lowest ask quote on

the EBS system in these currency pairs, from which we construct one-second mid-quote series and compute

one-minute exchange rate returns; all the quotes are executable and therefore represent the true price at

that moment. The transactions data are at the one-minute frequency and provide detailed information on

the volume and direction of trades that can be attributed to computers and humans in each currency pair.

Speci�cally, the transactions volume data are broken down into categories specifying the �maker�and �taker�

of the trades (i.e., human or computer), and the direction of the trades (i.e., buy or sell the base currency),

for a total of eight di¤erent combinations. That is, the �rst transaction category may specify, say, the minute-

by-minute volume of trade that results from a human taker buying the base currency by �hitting�a quote

posted by a human maker. We would record this activity as the human-human buy volume, with the aggressor

(taker) of the trade buying the base currency. The human-human sell volume is de�ned analogously, as are

the other six buy and sell volumes that arise from the remaining combinations of computers and humans

acting as makers and takers.

From these eight types of buy and sell volumes, we can construct, for each minute, trading volume and

order �ow measures for each of the four possible pairs of human and computer makers and takers: human-

maker/human-taker (HH), computer-maker/human-taker (CH), human-maker/computer-taker (HC), and

computer-maker/computer-taker (CC).7 That is, the sum of the buy and sell volumes for each pair gives

the volume of trade attributable to that particular combination of maker and taker (which we symbolize as,

V ol(HH) or V ol(HC), for example). The di¤erence between the buy and sell volume for each pair gives

us the order �ow attributable to that maker-taker combination (which we symbolize simply as HH or HC,

for example). The sum of the four volumes, V ol(HH + CH + HC + CC), gives the total volume of trade

in the market. The sum of the four order �ows, HH + CH + HC + CC, gives the total (market-wide)

order �ow.8 Throughout the paper, we will use the expression �order �ow�to refer both to the market-wide

order �ow and to the order �ows from other possible decompositions, with the distinction clearly indicated.

Importantly, the data allow us to consider order �ow broken down by the type of trader who initiated the

6We do not use December 2007 in the sub-sample to avoid the in�uence of year-end e¤ects.
7The naming convention for �maker�and �taker� re�ects the fact that the �maker�posts quotes before the �taker� chooses

to trade at that price. Posting quotes is, of course, the traditional role of the market-�maker.�
8There is a very high correlation in this market between trading volume per unit of time and the number of transactions

per unit of time, and the ratio between the two does not vary much over our sample. Order �ow measures based on amounts
transacted and those based on number of trades are therefore very similar.
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trade, human-taker order �ow (HH + CH) and computer-taker order �ow (HC + CC).

The main goal of this paper is to analyze the e¤ect algorithmic trading has on price discovery and

volatility in the foreign exchange market. In our exchange rate data as in other �nancial data, the net of

signed trades from the point of view of the takers (the market-wide order �ow) is highly positively correlated

with exchange rate returns, so that the takers are considered to be more �informed�than the makers. Thus,

in our analysis of the relative e¤ects of human and computer trades in the market, we consider prominently

the order �ow decomposition into human-taker order �ow and computer-taker order �ow. However, we also

consider two other decompositions in our work. We consider the most disaggregated decomposition of order

�ow (HH;CH;HC;CC), as this decomposition allows us to study whether the liquidity suppliers, who are

traditionally assumed to be �uninformed�, are posting quotes strategically. This situation is more likely to

arise in our data, which comes from a pure limit order book market, than in data from a hybrid market

like the NYSE, because, as Parlour and Seppi (2008) point out, the distinction between liquidity supply

and liquidity demand in limit order books is blurry.9 We also decompose the data by maker type (human

or computer) in order to study whether computers or humans are providing liquidity during the release of

public information, which are periods of high exchange rate volatility and, often, market stress.

In our analysis, we exclude data collected from Friday 17:00 through Sunday 17:00 New York time from

our sample, as activity on the system during these �non-standard� hours is minimal and not encouraged

by the foreign exchange community. We also drop certain holidays and days of unusually light volume:

December 24-December 26, December 31-January 2, Good Friday, Easter Monday, Memorial Day, Labor

Day, Thanksgiving and the following day, and July 4 (or, if this is on a weekend, the day on which the U.S.

Independence Day holiday is observed).

We show summary statistics for the one-minute returns and order �ow data in Table 1. This table contains

a number of noteworthy features. First, order �ow, whether in total, broken down by human and computer

takers, or broken down into the 4 possible pairs of makers and takers, is serially positively correlated, which

is consistent with some informed trading models. For example, Easley and O�Hara (1987) model a situation

where sequences of large purchases (sales) arise when insiders with positive (negative) signals are present in

the market. He and Wang (1995) also show that insiders with good (bad) news tend to buy (sell) repeatedly

until their private information is revealed in the prices. The positive serial correlation in order �ow is also

consistent with strategic order splitting, i.e. a trader willing to buy for informational or non-informational

reasons and splitting his order to reduce market impact. Second, the standard deviations of the various order

�ows di¤er by exchange rates, by type of taker and across maker/taker pairs. These di¤erences will be

9Parlour and Seppi (2008) note that in a limit order book investors with active trading motives, some of which are �informed�
traders, may choose to post limit orders that are more aggresive than those a disinterested liquidity provider would use but less
aggresive than market orders.
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important in the interpretation of the upcoming VAR analysis and variance decompositions.

We show in Figure 1, from 2003 through 2007 for our three major currency pairs, the fraction of trading

volume where at least one of the two counterparties was an algorithmic trader, i.e. V ol(CH +HC +CC) as

a fraction of total volume.10 From its beginning in 2003, the fraction of trading volume involving AT grew by

the end of 2007 to near 60% for euro-dollar, and dollar-yen trading, and to about 80% for euro-yen. Figure 2

shows, for our three currency pairs, the evolution over time of the four di¤erent possible types of trades (i.e.

V ol(HH), V ol(CH), V ol(HC), and V ol(CC); as fractions of the total volume). By the end of 2007, in the

euro-dollar and dollar-yen markets, human to human trades, in black, accounted for slightly less than half

of the volume, and computer to computer trades, in green, for about ten to �fteen percent. In euro-dollar

and dollar-yen, we note that V ol(HC) and V ol(CH) are about equal to each other, i.e. computers �take�

prices posted by humans, in red, about as often as humans take prices posted by market-making computers,

in blue. The story is di¤erent for the cross-rate, the euro-yen currency pair. By the end of 2007, there

were more computer to computer trades than human to human trades. But the most common type of trade

was computers trading on prices posted by humans. We believe this re�ects computers taking advantage

of short-lived triangular arbitrage opportunities, where prices set in the euro-dollar and dollar-yen markets

are very brie�y out of line with the euro-yen cross rate. In interpreting our results later in the paper, we

will keep in mind that trading volume is largest in the euro-dollar and dollar-yen markets, and that price

discovery happens mostly in those markets, not in the cross-rate. Our conclusions based on the euro-dollar

and dollar-yen markets will then be more easily generalized than those based on the euro-yen market. Table

2 tabulates the averages of the volume fractions shown in Figures 1 and 2, both for the full 2006-2007 sample

and the shorter three-month sub-sample.

3 How Correlated Are Algorithmic Trades and Strategies?

We �rst investigate the proposition that computers tend to have trading strategies that are more correlated

than those of humans. Since the outset of the �nancial turmoil in the summer of 2007, articles in the �nancial

press have suggested that AT programs tend to be similarly designed, leading them to take the same side of

the market in times of high volatility and potentially exaggerating market movements.11

One such instance may have happened on August 16, 2007, a day of very high volatility in the dollar-yen

market. On that day, the Japanese yen appreciated sharply against the U.S. dollar around 6:00 a.m. and 12:00

p.m. (NY time), as shown in Figure 3. The �gure also shows, for each 30-minute interval in the day, computer-

taker order �ow (HC +CC) in the top panel and human-taker order �ow (HH + CH) in the lower panel.

10The data in Figures 1 and 2 are 50-day moving averages of daily values, highlighting the broad trends over time.
11See, for instance, �Algorithmic Trades Produce Snowball E¤ects on Volatility,�Financial Times, December 5, 2008.
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The two sharp exchange rate movements mentioned happened when computers, as a group, aggressively

sold dollars and bought yen. We note that computers, during these episodes, mainly traded with humans,

not with other computers. Human order �ow at those times was, in contrast, quite small, even though the

overall trading volume initiated by humans (not shown) was well above that initiated by computers (human

takers were therefore selling and buying dollars in almost equal amounts). The �taking� orders generated

by computers during those time intervals were far more correlated than the taking orders generated by

humans. After 12:00 p.m., human traders, as a whole, then began to buy dollars fairly aggressively, and the

appreciation of the yen against the dollar was partially reversed. This is only a single example, of course,

but it leads us to ask how correlated computer trades and strategies have tended to be overall.

We do not know precisely the exact mix of the various strategies used by algorithmic traders on EBS.

Traders keep the information about their own strategies con�dential, including, to some extent, from EBS,

and EBS also keeps what they know con�dential.12 However, one can get a general sense of the market

and of the strategies in conversations with market participants. About half of the algorithmic trading

volume on EBS is believed to come from what is often known as the �professional trading community,�

which primarily refers to hedge funds and commodity trading advisors (CTAs). These participants, until

very recently, could not trade manually on EBS, so all their trades were algorithmic. Some hedge funds

and CTAs seek to exploit short-lived arbitrage opportunities, including triangular arbitrage, often accessing

several trading platforms. Others implement lower-frequency strategies, often grouped under the statistical

arbitrage appellation, including carry trades, momentum trades, and strategies spanning several asset classes.

Only a very small fraction of the trading volume in our sample period is believed to have been generated

by algorithms designed to quickly react to data releases. The other half (approximately) of the algorithmic

trading volume comes from foreign exchange dealing banks, the only participants allowed on the EBS system

until 2003. Some of the banks�algorithmic trading is clearly related to activity on their own customer-to-

dealer platforms, to automate hedging activity, and to minimizing the impact of the execution of large orders.

But a sizable fraction is believed to be proprietary trading implemented algorithmically, likely using a mix

of strategies similar to those employed by hedge funds and CTAs. Overall, market participants generally

believe that the mix of algorithmic strategies used in the foreign exchange market di¤ers from that seen in

the equity market, where optimal execution algorithms are thought to be relatively more prevalent.

The August 16, 2007 episode shown above was widely viewed as the result of a sudden unwinding of the

yen-carry trade, with hedge funds and proprietary trading desks at banks rushing to close risky positions

and buying yen to pay back low-interest loans. The evidence in this case raises the possibility that many

12EBS requires that new algorithmic traders on its system �rst test their algorithms in simulated conditions. EBS then rou-
tinely monitors the trading practices of its customers. A high number of excessively short-lived quotes (�ashing) is discouraged,
as is a very low ratio of trades to quotes.
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algorithmic traders were using fairly similar carry trade and momentum strategies at the time, leading to

the high correlation of algorithmic orders and to sharp exchange rate movements. Of course, this is only

one episode in our two-year sample. Furthermore, episodes of very sharp appreciation of the yen due to the

rapid unwinding of yen carry trades have occurred on several occasions since the late 1990s, some obviously

before algorithmic trading was allowed in the market. The sharp move of the yen in October 1998, including

a 1-day appreciation of the yen against the dollar of about 7 percent, is the best-known example of such an

episode. Next, we investigate whether there is evidence that, over the entire sample, the strategies used by

algorithmic traders have tended to be more correlated than those used by human traders.

If computers and humans are indi¤erent between taking or making liquidity at a given point in time,

then we should observe that computers and humans trade with each other in proportion to their relative

presence in the market. If, on the other hand, computers tend to have more homogeneous trading strategies,

we should observe computers trading less among themselves and more with humans. At the extreme, if all

computers used the very same algorithms and had the exact same speed of execution, we would observe no

trading volume among computers. Therefore, the fraction of trades conducted between computers contains

information on how correlated their strategies are.13

To investigate the proposition that computers tend to have trading strategies that are more correlated

than those of humans we pursue the following approach. We �rst consider a simple benchmark model that

assumes random and independent matching of traders. This model allows us to determine the theoret-

ical probabilities of the four possible trades: Human-maker/human-taker, computer-maker/human-taker,

human-maker/computer-taker and computer-maker/computer-taker. We then make inferences regarding the

diversity of computer trading strategies based on how the trading pairs we observe compare to those the

benchmark model predicts.

In the benchmark model there are Hm potential human-makers (the number of humans that are standing

ready to provide liquidity), Ht potential human-takers, Cm potential computer-makers, and Ct potential

computer-takers. For a given period of time, the probability of a computer providing liquidity to a trader

is equal to Prob(computer � make) = Cm
Cm+Hm

, which we label for simplicity as �m, and the probability

of a computer taking liquidity from the market is Prob(computer � take) = Ct
Ct+Ht

= �t. The remaining

makers and takers are humans, in proportions (1 � �m) and (1 � �t), respectively. Assuming that these

events are independent, the probabilities of the four possible trades, human-maker/human-taker, computer-

13Sto¤man (2007) uses a similar method to estimate how correlated individual investor strategies are compared to institutional
investor strategies.
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maker/human-taker, human-maker/computer-taker and computer-maker/computer taker, are:

Prob(HH) = (1� �m)(1� �t)

Prob(HC) = (1� �m)�t

Prob(CH) = �m(1� �t)

Prob(CC) = �m�t:

These probabilities yield the following identity,

Prob(HH)� Prob(CC) � Prob(HC)� Prob(CH);

which can be re-written as,
Prob(HH)

Prob(CH)
� Prob(HC)

Prob(CC)
:

We label the �rst ratio, RH � Prob(HH)
Prob(CH) , the �human-taker�ratio and the second ratio, RC �

Prob(HC)
Prob(CC) ,

the �computer-taker�ratio. In a world with more human traders (both makers and takers) than computer

traders, each of these ratios will be greater than one, because Prob(HH) > Prob(CH) and Prob(HC) >

Prob(CC) i.e., computers take liquidity more from humans than from other computers, and humans take

liquidity more from humans than from computers. However, under the baseline assumptions of our random-

matching model, the identity shown above states that the ratio of ratios, R � RC
RH , will be equal to one.

In other words, humans will take liquidity from other humans in a similar proportion that computers take

liquidity from humans.

Turning to the data, under the assumption that potential human-takers are randomly matched with

potential human-makers, i.e., that the probability of a human-maker/human-taker trade is equal to the one

predicted by our model, Prob(HH) = Hm�Ht

(Hm+Cm)�(Ht+Ct)
, we can now derive implications from observations of

R, our ratio of ratios. In particular, �nding R > 1 must imply that algorithmic strategies are more correlated

than what our random matching model implies. In other words, for R > 1 we must observe that either

computers trade with each other less than expected (Prob(CC) < Cm�Ct
(Hm+Cm)�(Ht+Ct)

) or that computers trade

with humans more than expected (either Prob(CH) > Cm�Ht

(Hm+Cm)�(Ht+Ct)
or Prob(HC) > Hm�Ct

(Hm+Cm)�(Ht+Ct)
).

Our dataset allows us to estimate an ex-post proxy for R. Namely, for each trading day we estimatedRH = V ol(HH)
V ol(CH) and

dRC = V ol(HC)
V ol(CC) , where V ol (HH) is the daily trading volume between human makers

and human takers, and so forth. In Table 3 we show the mean of the daily ratio of ratios, bR =
dRCdRH ; for

each currency pair for the full sample and the three-month sub-sample. In contrast to the above theoretical
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prediction that R � RC
RH = 1, we �nd that for all currency pairs bR is statistically greater than one. This

result is very robust: in euro-dollar, all daily observations of bR are above one, and only a very small fraction
of the daily observations are below one for the other currency pairs. The results thus show that computers

do not trade with each other as much as random matching would predict. We take this as evidence that

algorithmic strategies are likely less diverse than the trading strategies used by human traders.

This �nding, combined with the observed growth in algorithmic trading over time, may raise some concerns

about the impact of AT on volatility in the foreign exchange market. As mentioned previously, some analysts

have pointed to the possible danger of having many algorithmic traders take the same side of the market at

the same moment. However, it is not a foregone conclusion that a high correlation of algorithmic strategies

should necessarily lead to higher volatility or large swings in exchange rates. Both the high correlation

of trading strategies and the widespread use of de-stabilizing strategies may need to be present to cause

higher volatility. For instance, if many algorithmic traders use similar triangular arbitrage strategies, the

high correlation of those strategies should have little impact on volatility, and may even lower volatility as

it improves the e¢ ciency of the price discovery process. Strategies designed to minimize the price impact of

trades should also, a priori, not be expected to increase volatility. In contrast, if the high correlation re�ects

a large number of algorithmic traders using the same carry trade or momentum strategies, as in the August

2007 example shown at the beginning of this section, then there may be some reasons for concern. However,

as noted earlier, episodes of sharp movements in exchange rates similar to that example have occurred in

the past on several occasions, including well before the introduction of algorithmic trading in the foreign

exchange market, suggesting that such episodes are a result of the dramatic unwinding of certain trading

strategies, regardless of whether these strategies are implemented through algorithmic trading or not. In

the next section, we explicitly investigate the relationship between the presence of algorithmic trading and

market volatility.

4 The impact of algorithmic trading on volatility

In this section, we study whether the presence of algorithmic trading is associated with disruptive market

behavior in the form of increased volatility. In particular, taking into account the potential endogeneity of

algorithmic trading activity, we test for a causal relationship between the fraction of daily algorithmic trading

relative to the overall daily volume, and daily realized volatility.
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4.1 A �rst look

We �rst take an informal look at the data. Figure 4 shows monthly observations of annualized realized

volatility (based on 1-minute returns) and of the fraction of algorithmic trading (the fraction of total trading

volume involving at least one computer trader) for each of our currency pairs. As discussed earlier, there is a

clear upward trend in the fraction of AT in the three currency pairs over 2006 and 2007. Realized volatility

in euro-dollar, dollar-yen, and euro-yen declines slightly until mid-2007, and then rises in the second half of

2007, particularly sharply in the yen exchange rates, as the �nancial crisis begins.

In Figure 5, we study whether days with high market volatility are also days with a higher-than-usual

fraction of algorithmic trading, and vice-versa. Using daily observations, we �rst sort the data into increasing

deciles of realized volatility (the decile means are shown as bars in the graphs on the left).14 We then calculate

the mean fraction of AT for the days in each of these deciles (shown as lines in the same graphs). To account

for the sharp upward trend in algorithmic participation over our sample, the daily fraction of algorithmic

trading is normalized: we divide it by a 20-day moving average centered on the chosen observation (a moving

average from day t � 10 through day t + 10, excluding day t). Next, we repeat the exercise, now sorting

the daily data into increasing deciles of the normalized fraction of AT (the decile means are shown as bars

in the graphs on the right) and calculating mean realized volatility for the days in each of these deciles

(shown as lines in the same graphs). The results in Figure 5 (both the graphs on the left and the graphs on

the right) show little or no relationship between the level of realized volatility on a particular day and the

normalized fraction of AT on that same day. The highest decile in the euro-dollar currency pair may be the

only possible exception, with a slight uptick evident in both volatility and AT activity. Finally, we note that,

in untabulated results, for each of the three currency pairs, not one of the top 10 days in realized volatility

is associated with a top ten day in the share of (normalized) AT.

The simple analysis in Figure 5 does not point to any substantial systematic link between AT activity

and volatility. However, this analysis ignores the possible, and likely, endogeneity of algorithmic activity with

regards to volatility, and therefore does not address the question of whether there is a causal relationship

between algorithmic trading and volatility. In the remainder of this section, we attempt to answer this

question through an instrumental variable analysis.

4.2 Identi�cation

The main challenge in identifying a causal relationship between algorithmic trading and volatility is the

potential endogeneity of algorithmic trading. That is, although one may conjecture that algorithmic trading

14With 498 daily observations, the �rst 9 deciles each include 50 observations, and the highest decile contains 48 observations.
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impacts volatility, it is also plausible that algorithmic trading activity may be a function of the level of

volatility. For instance, highly volatile markets may present comparative advantages to automated trading

algorithms relative to human traders, which might increase the fraction of algorithmic trading during volatile

periods. In contrast, however, one could also argue that a high level of volatility might reduce the infor-

mativeness of historical price patterns on which some trading algorithms are likely to base their decisions,

and thus reduce the e¤ectiveness of the algorithms and lead them to trade less. Thus, one can not easily

determine in what direction the bias will go in an OLS regression of volatility on the fraction of algorithmic

trading. To deal with the endogeneity issue, we adopt an instrumental variable (IV) approach as outlined

below.

We are interested in estimating the following regression equation,

RVit = �i + �iATit + 

0
i� it +

22X
k=1

�iRVit�k + �it; (1)

where i = 1; 2; 3 represents currency pairs and t = 1; :::; T , represents time. RVit is (log) realized daily

volatility, ATit is the fraction of algorithmic trading at time t in currency pair i, � it is either a time trend or

a set of time dummies that control for secular trends in the data, and �it is an error term that is assumed

to be uncorrelated with RVit�k, k � 1, but not necessarily with ATit. The large number of lags of volatility,

which covers the business days of the past month, is included to control for the strong serial correlation in

volatility (e.g. Andersen, Bollerslev, Diebold, and Labys, 2003 and Bollerslev and Wright, 2000). The exact

de�nitions of RVit, ATit, and � it are given below.

The main focus of interest is the parameter �i, which measures the impact of algorithmic trading on

volatility in currency pair i. However, since ATit and �it may be correlated, due to the potential endogeneity

discussed above, the OLS estimator of �i may be biased. In order to obtain an unbiased estimate, we

will therefore consider an instrumental variable approach. Formally, we need to �nd a variable, or set of

variables, zit, that is uncorrelated with �it (validity of the instrument) and correlated with ATit (relevance

of the instrument).

The instrument we propose to use is the fraction of trading �oors equipped to trade algorithmically on

EBS relative to the total number of trading �oors linked to the EBS system.15 That is, in order to place

algorithmic trades on EBS, a special user interface is required, and the total number of trading �oors with

such user interfaces thus provides a measure of the overall algorithmic trading �capacity� in the market.

The ratio of these algorithmic trading �oors to the total number of trading �oors provides a measure of the

15More precisely, we actually observe a time series of the number of EBS �deal codes� of each type over our sample period.
Generally speaking, EBS assigns a deal code to each trading �oor equipped with at least one of its terminals, and records
whether they are equipped to trade algorithmically or not. These data are con�dential.
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potential fraction of algorithmic trading. Since setting up an algorithmic trading operation likely takes several

months, the number of trading �oors of each type is clearly exogenous with regards to daily market volatility;

the fraction of AT trading �oors is therefore a valid instrument. In addition, it is positively correlated with

the fraction of algorithmic trading, and it provides a relevant instrument as seen from the tests for weak

instruments discussed below.

Under the breakdown provided by EBS, there are three types of trading �oors linked to the EBS system:

purely algorithmic trading �oors, purely manual trading �oors, and dual trading �oors, those equipped to

handle both manual and algorithmic trades. We consider two natural instrumental variables: the fraction of

pure AT trading �oors over the total number of trading �oors (including pure AT, manual, and dual ones),

and the fraction of the sum of pure AT and dual trading �oors over the total number. Since it is not obvious

which variable is the better instrument, we use both simultaneously.16

The data on AT trading �oors are provided on a monthly basis, whereas the data on realized volatility and

algorithmic trading are sampled on a daily frequency. We therefore transform the trading �oor data to daily

data by repeating the monthly value each day of the month. Although this leads to a dataset of two years

of daily data, the number of daily observations (498) overstates the e¤ective number of observations, since

the coe¢ cient on AT participation will be identi�ed from monthly variations in the instrumental variables.

Transforming the instruments to a daily frequency is, however, more e¢ cient than transforming all data to

a monthly frequency, since the daily data help to identify the monthly shifts.

The instrumental variable regressions are estimated using Limited Information Maximum Likelihood

(LIML), and we test for weak instruments by comparing the �rst stage F�statistic for the excluded instru-

ments to the critical values of Stock and Yogo�s (2005) test of weak instruments. We use LIML rather than

two-stage least squares since Stock and Yogo (2005) show that the former is much less sensitive to weak

instruments than the latter (see also Stock et al., 2002).

4.3 Variable de�nitions

4.3.1 Realized Volatility

Volatility is measured as the daily realized volatility obtained from one minute returns; that is, the volatility

measure is equal to the square root of the daily sum of squared one minute log-price changes. The use of

realized volatility, based on high-frequency intra-daily returns, as an estimate of ex-post volatility is now

well established and generally considered the most precise and robust way of measuring volatility. Although

16Regressions not reported here show that using the fraction of pure AT trading �oors as a single instrument gives qualitatively
similar results to those presented below based on both instruments. Using the fraction of the sum of both pure and dual AT
trading �oors as a single instrument also leads to the same qualititative conclusion, but with more signs of weak instruments.
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many older studies relied on �ve minute returns in order to avoid contamination by market microstructure

noise (e.g. Andersen et al., 2001), recent work shows that sampling at the one-minute frequency, or even

higher frequencies, does not lead to biases in liquid markets (see, for instance, the results for liquid stocks

in Bandi and Russel, 2006, and the study by Chaboud et al., 2007, who explicitly examine EBS data on the

euro-dollar exchange rate during 2005 and �nds that sampling frequencies upwards of once every 20 seconds

does not lead to noticeable biases). Here, we restrict ourselves to using minute-by-minute data.17 Following

the common conventions in the literature on volatility modelling (e.g. Andersen, Bollerslev, Diebold, and

Labys, 2003), the realized volatility is log-transformed to obtain a more well behaved time-series.

4.3.2 Algorithmic trading

We consider two measures of the fraction of algorithmic trading, ATit, in a given currency pair: the computer-

participation fraction and the computer-taker fraction. The �rst is simply the percent of the overall trading

volume that includes an algorithmic trader as either a maker or a taker (V ol(CH + HC + CC)); that is,

the percent of trading volume where a computer is involved in at least one side of the trade. In addition,

we also consider an alternative measure de�ned as the fraction of overall trading volume that is due to a

computer-taker (V ol(HC + CC)).

4.3.3 Time controls

As seen in Figure 4, there is a clear secular trend in the computer-participation fraction,18 which is not present

in realized volatility. Euro-dollar, dollar-yen, and euro-yen volatility is trending down at the beginning of the

period and starts to trend up in the summer of 2007. In order to control for the trend in algorithmic trading

in the regression, we include either a �linear quarterly�time trend or a full set of year-quarter dummies, one

for each year-quarter pair in the data (8 dummies). That is, the linear quarterly time trend stays constant

within each quarter and increases by the same amount each quarter, whereas the year-quarter dummies allows

for a more �exible trend speci�cation that can shift in arbitrary fashion from year-quarter to year-quarter.

Both secular trend speci�cations are thus �xed within each quarter. This restriction is imposed in order to

preserve the identi�cation coming from the monthly instrumental variables. Using monthly, or �ner, time

dummies would eliminate the variation in the instrument and render the model unidenti�ed. Although it is

theoretically possible to include a monthly time trend, this would lead to very weak identi�cation empirically.

17Using realized volatility based on �ve-minute returns leads to results that are very similar to those reported below for the
one-minute returns, and the qualitative conclusions are identical.
18The same is true for the computer-taker fraction, not shown in the �gure.
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4.4 Empirical results

The regression results are presented in Table 4. We present OLS and LIML-IV results, with either the

quarterly trend or the year-quarter dummies included. We show in Panels A and B the results for the

computer-participation volume, and in Panels C and D the results for computer-taker volume. We report

results for the sample starting in January 2006 and ending in December 2007. In order to save space, we

only show the estimates of the coe¢ cients in front of the fraction of algorithmic trading volume variables.

The OLS results, which are likely to be biased due to the aforementioned endogeneity issues, show a fairly

clear pattern of a positive correlation between volatility and AT participation, with several positive and

statistically signi�cant coe¢ cients. The R2s are fairly large, re�ecting the strong serial correlation in realized

volatility, which is picked up by the lagged regressors. There are also no systematic di¤erences between the

quarterly trend and quarterly dummies speci�cations.

Turning to the more interesting IV results, which control for the endogeneity bias, the coe¢ cient estimates

change fairly dramatically. All point estimates are now negative and some of them are statistically signi�cant.

Thus, if there is a causal relationship between the fraction of algorithmic trading and the level of volatility, all

evidence suggests that it is negative, such that increased AT participation lowers the volatility in the market.

The stark di¤erence between the IV and OLS results shows the importance of controlling for endogeneity

when estimating the causal e¤ect of AT on volatility; the opposite conclusion would have been reached if

one ignored the endogeneity issue. The evidence of a statistically signi�cant relationship is fairly weak,

however, with most coe¢ cients statistically indistinguishable from zero. The more restrictive quarterly trend

speci�cation suggests a signi�cant relationship for the euro-dollar and dollar-yen, but this no longer holds if

one allows for year-quarter dummies.

To the extent that the estimated coe¢ cients are statistically signi�cant, it is important to discuss the

economic magnitude of the estimated relationship between AT and volatility. The regression is run with log

volatility rather than actual volatility, which makes it a little less straightforward to interpret the size of the

coe¢ cients. However, some back-of-the-envelope calculations can provide a rough idea. Suppose that the

coe¢ cient on computer participation is about �0:01, which is in line with the coe¢ cient estimates for the

euro-dollar. The average monthly shift in computer participation in the euro-dollar is about 1.5 percentage

points and the average log-volatility in the euro-dollar is about 3:76 (with returns calculated in basis points),

which implies an annualized volatility of about 6:82 percent. Increasing the computer participation fraction

by 1.5 percentage points decreases log-volatility by 0:015 and results in an annualized volatility of about 6:72.

Thus, a typical change in computer participation might change volatility by about a tenth of a percentage

point in annualized terms, a small e¤ect.
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The �rst stage F�statistics for the excluded instruments in the IV regressions are also reported in Panels

B and D. Stock and Yogo (2005) show that this F�statistic can be used to test for weak instruments.

Rejection of the null of weak instruments indicates that standard inference on the IV-estimated coe¢ cients

can be performed, whereas a failure to reject indicates possible size distortions in the tests of the LIML

coe¢ cients. The critical values of Stock and Yogo (2005) are designed such that they indicate a maximal

actual size for a nominal sized �ve percent test on the coe¢ cient. Thus, in the case considered here with two

excluded instruments and one endogenous regressor, a value greater than 8:68 for this F�statistic indicates

that the maximal size of a nominal 5 percent test will be no greater than 10 percent, which might be deemed

acceptable; a value greater than 5:33 for the F�statistic indicates a maximal size of 15 percent for a nominal

5 percent test. In general, the larger the F�statistic, the stronger the instruments. As is evident from the

table, there are no signs of weak instruments in the speci�cation with a quarterly trend. There are, however,

signs of weak instruments in the case with year-quarter dummies, for the euro-yen. This is not too surprising

given that the instruments only change on a monthly frequency, and the year-quarter dummies therefore put

a great deal of strain on the identi�cation mechanism. Importantly, though, the results for the two major

currency pairs are robust to any weak-instrument problems and the reported coe¢ cients and standard errors

are unbiased.

To sum up, the evidence of any causal e¤ect of algorithmic trading on volatility is not strong, but what

evidence there is points fairly consistently towards a negative relationship. There is thus no systematic

statistical evidence to back the often-voiced opinion that AT leads to increased levels of market volatility. If

anything, the contrary appears to be true.

5 Who provides liquidity during the release of public announce-

ments?

In the previous section we discuss one of the major concerns regarding algorithmic trading, namely, whether

AT causes exchange rate volatility. We now examine another major concern, whether AT improves or

reduces liquidity during stress periods, when it is arguably needed the most. To answer this question, we

cannot simply regress computer-maker volume, a proxy for liquidity provided by computers, on exchange

rate volatility, a proxy for stress periods, because, as we discussed in the previous section, algorithmic

volume and volatility are endogenous variables. In contrast to the previous section we do not estimate an IV

regression, as there are no obvious instruments for volatility.19 Instead, we follow the event study literature

19One could consider macroeconomic news announcements as potential instruments for volatility. However, macroeconomic
news announcements are exogeneous variables that cause both foreign exchange rate volatility and liquidity changes. Since we
cannot assume that the e¤ect macroeconomic news announcements have on liquidity is only due to the e¤ect macroeconomic
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and compare the liquidity provision by humans and computers during U.S. nonfarm payroll announcements,

a period of exogenously heightened volatility, to the liquidity provision by both types of agents during non-

announcement days. This comparison will help us determine who provides relatively more liquidity during

stress periods. We note that, when we consider liquidity provision by humans and computers following other

important macroeconomic news announcements, the results are qualitatively similar. However, we focus in

this section on the nonfarm payroll announcement only, as it routinely generates the highest volatility of all

US macroeconomic announcements.20

We consider two liquidity provision estimates: a one-minute estimate and a one-hour estimate. The one-

minute estimate is calculated using volume observations from 8:30 a.m. to 8.31 a.m. ET (when U.S. nonfarm

payroll is released), while the one-hour estimate is calculated using observations from 8:25 am to 9:24 am

ET. We de�ne the one-minute (one-hour) liquidity provision by humans, LH, as the sum of human-maker

volume, V ol(HH+HC), divided by total volume during that period, and the one-minute (one-hour) liquidity

provision by computers, LC, as the sum of computer-maker volume, V ol(CC+CH), divided by total volume

during that period. Similar to the liquidity provision measures, we de�ne the one-minute volatility as the

squared 1-minute return from 8:30 a.m. to 8.31 a.m. ET and the one-hour volatility as the sum of squared

1-minute returns from 8:25 am to 9:24 am ET.

To compare liquidity provision by humans and computers during announcement times to liquidity provi-

sion during (more tranquil) non-announcement times, we could estimate the average liquidity provision during

announcement times and compare it to the average liquidity provision during non-announcement times, with

both means taken over the entire sample period. However, as we discussed previously, exchange rate trading

volumes and the shares of liquidity provision by humans and computers exhibit clear trends over our sample,

making the comparison of the two di¤erent means problematic. Alternatively, and this is the methodology

we follow, on each announcement day we estimate the ratio of liquidity provision on that day relative to the

liquidity provision on days surrounding the announcement. This amounts to using a non-parametric approach

to detrend the data. The time series of these ratios will be stationary, and we can then test the hypothe-

sis that the ratio is greater than one. Speci�cally, we divide the one-minute (one-hour) liquidity provision

by humans, LHa, and computers, LCa, estimated on announcement day t by the one-minute (one-hour)

liquidity provision by humans, LHn, and computers, LCn, respectively, estimated during the surrounding

non-announcement day period, de�ned as 10 business days before and after a nonfarm payroll release date

t. The liquidity provision measures on the non-announcement days are calculated in the same manner as

on the announcement days, using data only for the periods 8:30 a.m. to 8.31 a.m. ET or 8:25 am to 9:24

news announcements have on volatility, the exclusion restriction required by IV estimation is violated.
20Andersen and Bollerslev (1998), among others, refer to the nonfarm payroll report as the �king�of announcements, because

of the signi�cant sensitivity of most asset markets to its release.
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am ET, for the one-minute and one-hour measures, respectively.21 We follow the same procedure with our

one-minute and one-hour volatility estimates.

Consistent with previous studies, we show in Table 5 Panel A that the one-hour volatility on nonfarm

payroll announcement days is 3 to 6 times larger than during non-announcement days. The one-minute

volatility is 15 to 30 times larger during announcement days compared to non-announcement days. As

expected, given the fact that we focus on a U.S. data release, the volatility increase is smaller in the cross-

rate, the euro-yen exchange rate, than in the euro-dollar and yen-dollar exchange rates. Focusing on the

statistically signi�cant estimates, we show in Table 5 Panel B that, as a share of total volume, human-

maker volume tends to increase during the minute of the announcement (the one-minute ratio LHa

LHn
is greater

than one), while computer-maker volume tends to decrease (the one-minute ratio LCa
LCn

is less than one).

Interestingly, this pattern is reversed when we focus on the one-hour volume estimates for the euro-dollar

and euro-yen exchange rate markets. In relative terms, computers do not increase their provision of liquidity

as much as humans do during the minute following the announcement. However, computers increase their

provision of liquidity relatively more than humans do over the entire hour following the announcement, a

period when market volatility remains quite elevated.

We note that, over our sample period, the U.S. nonfarm payroll data releases were clearly the most

anticipated and most in�uential U.S. macroeconomic data releases. They often generated a large initial

sharp movement in exchange rates, followed by an extended period of volatility. The behavior of computer

traders observed in the �rst minute could re�ect the fact that many algorithms are not designed to react

to the sharp, almost discrete, moves in exchange rates that often come at the precise moment of the data

release. Some algorithmic traders may then prefer to pull back from the market a few seconds before 8:30

a.m. ET on days of nonfarm payroll announcements, resuming trading once the risk of a sharp initial price

movement has passed. But the data show that algorithmic traders, as a whole, do not shrink back from

providing liquidity during the extended period of volatility that follows the data releases.

6 Price Discovery

In the previous three sections, we analyze questions that are primarily motivated by practical concerns

regarding algorithmic trading, such as whether computer traders induce volatility or reduce liquidity. In this

section we turn to questions that are driven more by the market microstructure literature, but that also lead

21For simplicity, we label the 10 business days before and after the nonfarm payroll announcement as non-announcement days.
However, during this 20-day period there are both days with no macroeconomic news and days with news. For instance, every
Thursday, including the day before the monthly nonfarm payroll number is released, initial jobless claims are released. Thus,
our estimation will likely be biased towards not �nding statistically di¤erent behavior across the two periods. As we show in
Table 5, volatility is, on average, much lower during this 20-day period than on nonfarm payroll days, and therefore the period
still serves as a good benchmark.
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to interesting practical insights regarding the e¤ects and nature of algorithmic trading. In particular, we

study price discovery within a vector autoregressive framework, which enables us to evaluate to what extent

humans or computers represent the �informed�traders in the market. Our �ndings reveal several interesting

features regarding the impact of algorithmic trades and the order placement behavior of computer traders.

6.1 Who are the �informed�traders, humans or computers?

We �rst investigate whether human or computer trades have a more �permanent�impact on prices. To this

end, we estimate return-order �ow dynamics in a structural vector autoregressive (VAR) framework in the

tradition of Hasbrouck (1991a), where returns are contemporaneously a¤ected by order �ow, but order �ow

is not contemporaneously a¤ected by returns. Similar to Hasbrouck�s (1996) decomposition of program and

nonprogram order �ow, we decompose order �ow into two components: human-taker
�
OF (ht) = HH + CH

�
and computer-taker

�
OF (ct) = HC + CC

�
, and thus we estimate for each currency i one return equation

and two order �ow equations. In light of Evans and Lyons (2008) �ndings, we estimate the structural VAR

with U.S. macroeconomic news surprises as exogenous variables that a¤ect both returns and order �ow.

Speci�cally, we estimate the following system of equations for each currency i,
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Here rit is the 1-minute exchange rate return for currency i at time t; OFhtit is the currency i human-taker order

�ow at time t; OF ctit is the currency i computer-taker order �ow at time t; and Skt is the macroeconomic news

announcement surprise for announcement k at time t de�ned as the di¤erence between the announcement

realization and its corresponding market expectation. We use Bloomberg�s real-time data on the expectations

and realizations of K = 28 U.S. macroeconomic fundamentals to calculate Skt. The 28 announcements we

consider are similar to those in Andersen et al. (2003, 2007) and Pasquariello and Vega (2007).22 Since units

of measurement vary across macroeconomic variables, we standardize the resulting surprises by dividing each

22Our list of U.S. macroeconomic news announcements is the same as the list of announcements in Andersen et al. (2007) and
Pasquariello and Vega (2007) with the addition of three announcements: unemployment rate, core PPI and core CPI. Andersen
et al. (2007) and Pasquariello and Vega (2007) use International Money Market Services (MMS) data on the expectations of
U.S. macroeconomic fundamentals. In contrast, we use Bloomberg data because the MMS data are no longer available after
2003. Bloomberg provides survey data similar to those MMS previously provided.
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of them by their sample standard deviation. Economic theory suggests that we should also include foreign

macroeconomic news announcements in equation (2). However, previous studies �nd that exchange rates do

not respond much to non-U.S. macroeconomic announcements, even at high frequencies (e.g. Andersen et

al., 2003), so we expect the omitted variable bias in our speci�cation to be small.

The underlying economic model is based on continuous time, and we thus estimate the VAR using the

highest sample frequency available to us, minute-by-minute data. The estimation period is restricted to the

2006�2007 sample, and the total number of observations for each currency pair is 717; 120 in the full sample

and 89; 280 in the three-month sub-sample (September, October and November of 2007). In both samples,

20 lags are included in the estimated VARs, i.e. J = 20.

Our speci�cation in equation (2) does not allow human-taker order �ow to contemporaneously a¤ect

computer-taker order �ow or vice-versa. The advantage of this approach is that we can estimate the impulse

response functions without giving more importance to a particular type of order �ow, i.e., we do not need to

assume a particular ordering of the human-taker and computer-taker order �ow in the VAR. The disadvantage

is that the human-taker and computer-taker order �ow shocks may not be orthogonal. However, in our

estimation this does not appear to be a problem, as our residuals are found to be approximately orthogonal

(the correlation between the human-taker and computer-taker equation residuals are -0.001, -0.1 and -0.1 for

the euro-dollar, yen-dollar, and euro-yen exchange rates respectively). As a robustness check, we also estimate

the VAR with two di¤erent orderings. We �rst assume human-taker order �ow a¤ects computer-taker order

�ow contemporaneously, and then assume the opposite ordering. This latter approach allows us to compute

upper and lower bound impulse responses. These results are presented in the Appendix, and show that the

results presented here are not sensitive to alternative identi�cation schemes in the VAR.

Before considering the impulse response functions and the variance decompositions, we brie�y summarize

the main lessons from the estimated coe¢ cients in the VAR. Focusing on the return equation, we �nd that

minute-by-minute returns tend to be negatively serially correlated, with the coe¢ cient on the �rst own lag

varying between �0:08 and �0:15; there is thus some evidence of mean reversion in the exchange rates at

these high frequencies, which is a well-know empirical �nding. Both order �ows are signi�cant predictors of

returns. The price impact of the lagged order �ows range from around 4 to 18 basis points per billion units

of order �ow (denominated in the base currency), as compared to a range of approximately 28 � 100 basis

points in the contemporaneous order �ow. As theory would predict, we �nd that U.S. macroeconomic news

announcements a¤ect less the euro-yen exchange rate (i.e., the R2 of regressing the euro-yen exchange rate on

macroeconomic news surprises and restricting the sample to announcement-only observations is 23%) than

the euro-dollar and dollar-yen exchange rates (i.e., the R2s of an announcement-only sample are 60% and

59%, respectively). However, U.S. macroeconomic news announcements still have an e¤ect on the cross-rate
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to the extent that the U.S. economy is more or less correlated with the Japanese or the Euro-area economy.

Focusing on the order-�ow equations, we �nd that the �rst own lag in both order �ow equations is

always highly signi�cant, and typically around 0:1 for all currency pairs. There is thus a sizeable �rst-order

autocorrelation in the human-taker and computer-taker order �ows. The coe¢ cients on the �rst order cross-

lags in the order �ow regressions are most often substantially smaller than the coe¢ cient on the own lag and

vary in signs. Lagged returns have a small but positive impact on order �ow, suggestive of a form of trend

chasing by both computers and humans in their order placement.

We note that despite the strongly signi�cant estimates that are recorded in the VAR estimations, the

amount of variation in the order �ow and return variables that is captured by their lagged values is very

limited. The R2 for the estimated equations with only lagged variables are typically around three to ten

percent for the order �ow equations, and between one and three percent for the return equations. This can

be compared to an R2 of 20 to 30 percent when one includes contemporaneous order �ow.

6.2 Impulse Response Function and Variance Decomposition Results

As originally suggested by Hasbrouck (1991b), we use the impulse response functions to assess the price

impact of various order �ow types, and the variance decompositions to measure the relative importance of

the variables driving foreign exchange returns. In Table 6 Panel A, we show the results from the impulse

response analysis based on the estimation of equation (2), using the full sample for 2006-2007 and the three-

month sub-sample, when the size of the shock is the same across the di¤erent types of order �ow: a one billion

base currency shock to order �ow. We also show the results when the size of the shock varies according to

the average size shock: a one standard deviation base currency shock to order �ow (Table 6 Panel B).

We show both the short-run (instantaneous) impulse responses, the long-run cumulative responses, and the

di¤erence between the two responses. The long-run statistics are calculated after 30-minutes, at which point

the cumulative impulse responses have converged and can thus be interpreted as the long-run total impact

of the shock. All the responses are measured in basis points. The standard errors reported in the tables are

calculated by bootstrapping, using 200 repetitions.

Starting with a hypothetical shock of one billion base currency order �ow, the results in Table 6 Panel

A, show that the immediate response of prices to human-taker order �ow is often larger than the immediate

response to computer-taker order �ow. This may partially be attributed to the fact that some of the algorith-

mic trading is used for the optimal execution of large orders at a minimum cost. Algorithmic trades appear

to be successful in that endeavor, with computers likely breaking up the larger orders and timing the smaller

trades to minimize the impact on prices. We emphasize, though, that the di¤erences in price impact, which
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range from 1 to 8 basis points, are not very large in economic terms. Furthermore, we �nd that the result can

be reversed in the long-run and in the three-month sub-sample. For example, the euro-dollar human-taker

price impact is larger than the computer-taker price impact in the short-run, but the opposite is true in the

long-run and in the three-month sub-sample.

In contrast to these results, the response to a hypothetical one standard deviation shock to the di¤erent

order �ows (Table 6 Panel B) consistently shows that in the euro-dollar and dollar-yen markets, humans

have a bigger impact on prices than computers and the di¤erences are relatively large. For example, a one

standard deviation shock to human-taker order �ow in the yen-dollar exchange rate market has an average

long-run e¤ect of 0.9 basis points compared to an average e¤ect of 0.3 basis points for computer-taker order

�ow. Interestingly, the di¤erence in price impact in the cross-rate, the euro-yen exchange rate, is very

small. In this market, computers have a clear advantage over humans in detecting and reacting more quickly

to triangular arbitrage opportunities so that a large proportion of algorithmic trading contributes to more

e¢ cient price discovery. It is then not so surprising that in this market computers and humans, on average,

appear to be equally �informed.�

In Table 7 we report the fraction of the total (long-run) variance in returns that can be attributed to

innovations in human-taker order �ow and computer-taker order �ow.23 Following Hasbrouck (1991b), we

interpret this variance decomposition as a summary measure of the informativeness of trades, and thus, in the

current context, a comparison of the relative informativeness of the di¤erent types of order �ow. Consistent

with the results from the impulse response functions based on a one standard deviation shock to order �ow, we

�nd that in the euro-dollar and dollar-yen exchange rate markets human-taker order �ow explains much more

of the total variance in returns than computer-taker order �ow. Speci�cally, human-taker order �ow explains

about 30 percent of the total variance in returns compared to only 4 percent explained by computer-taker

order �ow.

The fact that human-taker order �ow explains a bigger portion of total variance in returns is not surprising

because human-taker volume is about 75 percent of total volume in these two markets in the full sample period

and about 65 percent of total volume in the three-month sub-sample (see Table 2). Moreover large buy (sell)

orders tend to be human-taker orders, i.e. we show in Table 1 that the standard deviation of human-taker

order �ow is twice as big as that of the computer-taker order �ow. But, do computers tend to contribute

�disproportionately�little to the long-run variance in returns relative to their trading volume? To answer this

question we do a back-of-the-envelope calculation. We compute the relative share of the explained variance

that is due to computer-taker order �ow as the percent of total variation in returns explained by computer-

23The variance decompositions are virtually identical in the short- and long-run and thus we only show the long-run decom-
position results.
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taker order �ow divided by the percent of total variation in returns explained jointly by both human-taker

and computer-taker order �ow. For example, this relative share is 14% = 100 � 4:74
34 (Table 7) in the euro-

dollar market. We can then compare this relative share to the fraction of overall trading volume that is due

to computer-taker volume, which we show in Table 2. In the full 2006-2007 sample for the euro-dollar and

the dollar-yen currency pairs, the fraction of volume due to computer-takers is about twice as large as the

fraction of the explained long-run variance that is due to computer-taker order �ow. In the euro-yen, the

fractions are approximately equal. These results are fairly similar in the three-month sub-sample, although

the fraction of explained variance has increased somewhat compared to the volume fraction. Thus, in the

two major currency pairs, there is evidence that computer-taker order �ow contributes relatively less to the

variation in returns than one would infer from just looking at the proportion of computer-taker volume.

6.3 Are liquidity providers �uninformed�?

We now turn to examine whether liquidity providers post quotes strategically. To this end we augment

equation (2) and decompose order �ow into four components. Speci�cally, we estimate the following system

of equations for each currency i;

rit = �r +

JX
j=1

�rijrit�j +

LX
l=1

JX
j=0


rlijOF
(l)
it�j +

KX
k=1

�rikSkt + "
r
it; (3)

OF
(l)
it = �OFl +

JX
j=1

�OFijl rit�j +

LX
l=1

JX
j=1


OF
(l)

ijl OF
(l)
it�j +

KX
k=1

�OFikl Skt + "
OF (l)

it :

where rit is the 1-minute exchange rate return for currency i at time t; L = 4, OF (1)it = OFHHit is the

currency i human-maker/human-taker order �ow at time t; OF (2)it = OFCHit is the currency i computer-

maker/human-taker order �ow at time t; OF (3)it = OFHCit is the currency i human-maker/computer-taker

order �ow at time t; OF (4)it = OFCCit is the currency i computer-maker/computer-taker order �ow at time t;

Skt is the macroeconomic news announcement surprise for announcement k at time t.24

In addition to identifying whether traders, on average, have a more permanent impact on prices when

trading with humans than with computers, this speci�cation also allows us to observe the e¤ect order �ow

has on prices when, for instance, no party has a speed advantage, i.e. both parties are humans or both parties

are computers, and when either the maker has a speed advantage, CH, or the taker has a speed advantage,

HC. This distinction may be particularly useful when analyzing the cross-rate, where computers likely have

24 In the Appendix, we analyze the robustness of this structural VAR by also estimating impulse responses and variance
decompositions from all possible triangular identi�cation schemes, only imposing that returns are ordered last in the VAR.
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a clear advantage over humans in detecting short-lived triangular arbitrage opportunities.

Starting with a hypothetical shock of one billion base currency order �ow, the results in Table 8 Panel A

show that there is no clear pattern in which order �ow impacts prices the most. However, the dynamics of the

VAR system help reveal an interesting �nding: There is a consistent and often large short-run over-reaction

to CC and CH shocks. That is, as seen in Table 8, the short run response to a CC or CH order �ow shock

is always larger than the long-run response, and sometimes substantially so. The euro-dollar in the sample

covering September, October, and November of 2007 provides an extreme case where the initial reaction to

a one billion dollar CC shock is a 22 basis point move, but the long-run cumulative reaction is just 6 basis

points. Interestingly, the opposite pattern is true for the HH order �ow shocks, where there is always an

initial under -reaction in returns. To the extent that an over-reaction of prices to order �ow is suggestive of

the presence of liquidity traders, these impulse response patterns suggest that computers provide liquidity

when the probability of trading with an informed trader is low.25

The response to a hypothetical one standard deviation shock to the di¤erent order �ows consistently

shows that HH order �ow has a bigger impact on prices than CC order �ow (Table 8 Panel B) and that

the di¤erences are large. In particular, a one standard deviation shock to HH order �ow has an average

long-run e¤ect of 0.6 basis points across currencies compared to a one standard deviation shock to CC order

�ow, which has an average e¤ect of 0.1 basis points. Interestingly, we observe that when humans trade with

other humans they in�uence prices more than when they trade with computers (the impact of HH on prices

is bigger than the impact of CH on prices), and when computers trade with other computers they in�uence

prices less than when they trade with humans (the impact of CC on prices is smaller than the impact of HC

on prices). Our interpretation is that computers provide liquidity more strategically than humans, so that the

counterparty cannot a¤ect prices as much. This interpretation is consistent with the over-reaction of prices

to CC and CH order �ow described above: Computers appear to provide liquidity when adverse selection

costs are low. This �nding relates to the literature that proposes to depart from the prevalent assumption

that liquidity providers in limit order books are passive.26

We also �nd that the price response to order �ow varies across currencies as these markets di¤er along

several dimensions. Trading volume is largest in the euro-dollar and dollar-yen markets, compared to the

euro-yen market, and price discovery clearly happens mostly in the two largest markets. In the cross-rate

25Dynamic learning models with informed and uninformed investors predict that prices will temporarily over-react to unin-
formed order �ow and under-react to informed order �ow (e.g., Albuquerque and Miao, 2008). We note that the over- and
under-reaction of prices to a particular type of order �ow is di¤erent from the over- and under-reaction of prices to public news,
which are both considered a sign of market ine¢ ciency. Order �ow types are not public knowledge, so that agents cannot trade
on this information.
26For example, Chakravarty and Holden (1995), Kumar and Seppi (1994), Kaniel and Liu (2006), and Goettler, Parlour and

Rajan (2007) allow informed investors to use both limit and market orders. Bloom�eld, O�Hara and Saar (2005) argue that
informed traders are natural liquidity providers and Angel (1994) and Harris (1998) show that informed investors can optimally
use limit orders when private information is su¢ ciently persistent.

24



market, the euro-yen, computers have a speed advantage over humans in pro�ting from triangular arbitrage

opportunities, where prices set in the euro-dollar and dollar-yen markets are very brie�y out of line with the

euro-yen rate. Consistent with this speed advantage we observe that human-maker/computer-taker order

�ow has a larger price impact in the cross-rate market than in the other two markets.

In addition to the impulse response functions, we also report the long-run forecast variance decomposition

of returns in Table 9 for both the full sample and the three-month sub-sample. Consistent with the impulse

response functions to a one standard deviation shock to order �ow, the HH order �ow makes up the dominant

part of the variance share in the euro-dollar and dollar-yen exchange rate markets. In the last three months

of the sample, this share has generally decreased. The share of variance in returns that can be attributed

to the CC order �ow is surprisingly small, especially in the latter sub-sample, given that this category of

trades represents a sizeable fraction of overall volume of trade during the last months of 2007, as seen in

Table 2. The mixed order �ow (CH and HC order �ow) typically contributes with about the same share to

the explained variance in the euro-dollar and dollar-yen exchange rate markets. In contrast, in the euro-yen

exchange rate market HC order �ow makes up the dominant part of the variance share, which is consistent

with our discussion of computers taking advantage of triangular arbitrage opportunities in this market.

Overall, about 15 to 35 percent of the total variation in returns can be attributed to shocks to the four

order �ows. However, in most currency pairs, very little of this ultimate long-run price discovery that occurs

via order �ow does so via the CC order �ow. Similar to Table 7, we also report in Table 9 the fraction of

the explained share of the return variance that can be attributed to the di¤erent order �ow combinations.

Comparing these to the fraction of overall volume that is due to these combinations of computers and humans,

reported in Table 2, gives an idea of whether the di¤erent order �ow combinations contribute proportionately

to the variance in returns. It is clear that CC order �ow tends to contribute disproportionately little to the

long-run variance of returns, and that HH order �ow often contributes disproportionately much.

7 Conclusion

Using highly-detailed high-frequency trading data for three major exchange rates over 2006 and 2007, we

analyze the impact of the growth of algorithmic trading on the spot interdealer foreign exchange market. We

focus on the following questions: (i) Are the algorithms underlying the computer-generated trades similar

enough to result in highly correlated strategies, which some fear may cause disruptive market behavior?

(ii) Does algorithmic trading increase volatility in the market, perhaps as a result of the previous concern?

(iii) Do algorithmic traders improve or reduce market liquidity at times of market stress? (iv) Are human

or computer traders the more �informed� traders in the market, i.e. who has the most impact on price
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discovery? (v) Is there evidence in this market that the liquidity providers (the �makers�) and not just the

liquidity �takers�, are informed, and do computer makers post orders more strategically than human makers?

The �rst three questions directly address concerns that have been raised recently in the �nancial press,

especially in conjunction with the current crisis, while the last two questions relate more to the empirical

market microstructure literature on price discovery and order placement. Together, the analysis of these

questions brings new and interesting results to the table, both from a practical and academic perspective, in

an area where almost no formal research has been available.

Our empirical results provide evidence that algorithmic trades are more correlated than non-algorithmic

trades, suggesting that the trading strategies used by the computer traders are less diverse than those

of their human counterparts. Although this may cause some concerns regarding the disruptive potential of

computer-generated trades, we do not �nd evidence of a positive causal relationship between the proportion of

algorithmic trading in the market and the level of volatility; if anything, the evidence points towards a negative

relationship, suggesting that the presence of algorithmic trading reduces volatility. As for the provision of

market liquidity, we �nd evidence that, compared to non-algorithmic traders, algorithmic traders reduce their

share of liquidity provision in the minute following major data announcements, when the probability of a

price jump is very high. However, they increase their share of liquidity provision to the market over the entire

hour following these announcements, which is almost always a period of elevated volatility. This empirical

evidence thus suggests that computers do provide liquidity during periods of market stress.

To address the last two questions (price discovery and order placement), we use a high-frequency VAR

framework in the tradition of Hasbrouck (1991a). We �nd that non-algorithmic trades account for a sub-

stantially larger share of the price movements in the euro-dollar and yen-dollar exchange rate markets than

would be expected given the sizable fraction of algorithmic trades. Non-algorithmic traders are the �in-

formed�traders in these two markets, driving price discovery. In the cross-rate, the euro-yen exchange rate

market, we �nd that computers and humans are equally �informed,� likely because of the large proportion

of algorithmic trades dedicated to search for triangular arbitrage opportunities. Finally, we �nd that, on

average, computer takers or human takers that trade on prices posted by computers do not impact prices

as much as they do when they trade on prices posted by humans. One interpretation of this result is that

computers place limit orders more strategically than humans do. This �nding dovetails with the literature

on limit order books that relaxes the common modeling assumption that liquidity providers are passive.

Overall, this study therefore provides essentially no evidence to bolster the widespread concerns about

the e¤ect of algorithmic trading on the functioning of �nancial markets. The lesson we take from our analysis

of algorithmic trading in the interdealer foreign exchange market is that it is more how algorithmic trading

is used and what it is predominantly designed to achieve that determines its impact on the market, and not
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primarily whether or not the order �ow reaching the market is generated at high frequency by computers.

In the global interdealer foreign exchange market, the rapid growth of algorithmic trading has not come at

the cost of lower market quality, at least not in the data we have seen so far. Given the constant search

for execution speed in �nancial markets and the increasing availability of algorithmic trading technology, it

is likely that, absent regulatory intervention, the share of algorithmic trading across most �nancial markets

will continue to grow. Our study o¤ers hope that the growing presence of algorithmic trading will not have

a negative impact on global �nancial markets.

Appendix: Robustness check of the VAR results

The impulse responses and variance decompositions in the above VAR analyses are derived under the as-

sumption that there are no contemporaneous interactions between the di¤erent order �ow components. This

identifying assumption is appealing because it treats the order �ow components symmetrically and ensures

that the results are not driven by the ordering of the order �ows in the VAR. On the other hand, it cannot

be ruled out that one order �ow component a¤ects another one contemporaneously within the one-minute

timespan over which each observation is sampled. If this is the case, the VAR speci�cation that we use above

would be too restrictive and the resulting impulse responses and variance decompositions would likely be

biased. As discussed above, given the fairly low correlation that we observe in the VAR residuals for the

di¤erent order �ow equations, this does not appear to be a major concern, but since these correlations are

not identical to zero it is still possible that other identi�cation schemes would lead to di¤erent conclusions.

In this section we therefore perform a comprehensive robustness check of the VAR results by calculating

upper and lower bounds on the impulse responses and variance decompositions. In particular, we consider

all possible orderings of the order �ows in the VARs, while imposing a triangular structure. That is, we still

assume that returns are ordered last in the VAR and are thus a¤ected contemporaneously by all order �ow

components, but we then consider all possible orderings for the di¤erent order �ows. In the case where we

split order �ow into human and computer order �ow, this results in just two di¤erent speci�cations� one

where computer order �ow a¤ects human order �ow contemporaneously but contemporaneous human order

�ow has no impact on computer order �ow, and the opposite speci�cation where human order �ow a¤ects

computer order �ow contemporaneously. In the case with four di¤erent order �ows, there are 24 di¤erent

orderings, when one allows for all possible triangular identi�cation schemes, only imposing that returns are

ordered last. From each of these speci�cations, we calculate impulse responses and variance decompositions.

The minimum and maximum of these over all speci�cations are reported in Tables A1 and A2 for the two

order �ow case and in Tables A3 and A4 in the four order �ow case.
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Starting with the simpler case with order �ow split up into human or computer order �ow, Tables A1

and A2 con�rm our conjecture that the low correlation in the VAR residuals render the VAR speci�cation

very robust to the ordering of the order �ows. The min-max intervals shown in the two tables are generally

very tight and all of our earlier qualitative conclusions that we draw from our preferred structural VAR

speci�cation holds also under these alternative orderings.

Turning to the VAR analysis with four separate order �ow, the number of possible orderings increases

dramatically to 24. This large number of possible speci�cations inevitably results in wider min-max intervals,

even though the correlations in the VAR residuals are generally small. In order to usefully interpret these

results, we check whether our main qualitative conclusions from our preferred structural speci�cation analyzed

above also holds up, in a min-max sense, under all possible orderings. Our �rst main result in the above

analysis was that there is an initial over-reaction to CC and CH shocks and an initial under-reaction to HH

shocks. As seen in Table A3, these �ndings are mostly supported by the min-max results as well. The only

exceptions recorded are for the euro-yen cross rate, where the under-reaction to CC and CH shocks is also

much weaker in the original results in Table 8. It is also evident from Table A3, Panel B, that the min-max

results support the �nding that a one standard deviation shock to HH has a substantially bigger impact on

returns than a CC shock. In addition, Table A3, Panel B, also shows that the impact of the HH shock tends

to be larger than the CH impact, and the CC impact tends to be smaller than the HC impact. Finally,

the results in Table A3 also mostly support the �nding that the reactions to HC order �ow are greater in

the euro-yen cross currency than in the two main currency pairs, although some overlap is seen for the one

standard deviation shock in Panel B.

Table A4 shows the corresponding min-max results for the variance decomposition. Again, our main

conclusions are mostly supported in a min-max sense. HH makes up the largest share of the explained

variance in the two main currency pairs in the full sample, although in the three-month sub-sample there

is some overlap between the min-max intervals for the HH order �ow and the HC order �ow. CC always

contributes a very small share of the explained variance and HC always contributes a fairly substantial share

in the cross currency.

In summary, these robustness checks show that our main VAR used for examining price discovery (equation

(2)), using human and computer order �ows, is not particularly sensitive to the exact identi�cation scheme

that is used. The results presented in Tables 6 and 7 thus appear to be robust to alternative orderings in the

VAR. Our second VAR speci�cation (equation (3)), which we use to analyze strategic liquidity provision, is

a little more sensitive to the exact identi�cation scheme used, but the min-max results are still overall very

supportive of our main conclusions.
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Table A1: Min-max impulse responses from the VAR speci�cation with human-taker and computer-taker
order �ow. The table shows the minimum and maximum triangular impulse responses for returns as a result
of shocks to the human-taker order �ow (HH + CH) or computer-taker (CC + HC) order �ow, denoted
H-taker and C-taker in the table headings, respectively. In Panel A we show the return response, in basis
points, to a one-billion base-currency shock to one of the order �ows. In Panel B we show the return response,
in basis points, to a one standard deviation shock to one of the order �ows. We show the results for the
full 2006-2007 sample and for the three-month sub-sample, which only uses data from September, October,
and November of 2007. For each currency pair we show the short-run (immediate) response of returns; the
corresponding cumulative long-run response of returns, calculated as the cumulative impact of the shock after
30 minutes; and the di¤erence between the cumulative long-run response in returns minus the immediate
response of returns, i.e., we provide the extent of over-reaction or under-reaction to an order �ow shock. There
are a total of 717; 120 minute-by-minute observations in the full two-year sample and 89; 280 observations in
the three-month sub-sample.

Full 2006-2007 sample 3-month sub-sample
H-taker C-taker H-taker C-taker

Panel A: One billion base-currency shock
USD/EUR

Short run [28:05; 28:06] [26:84; 26:94] [23:11; 23:20] [24:89; 25:22]

Long run [27:85; 27:87] [32:26; 32:35] [24:06; 24:16] [31:04; 31:38]

Di¤erence [�0:20;�0:20] [5:42; 5:42] [0:94; 0:96] [6:14; 6:16]

JPY/USD
Short run [44:96; 46:76] [28:92; 39:81] [44:99; 48:02] [33:45; 44:88]

Long run [45:50; 47:50] [33:21; 44:27] [46:80; 49:54] [28:83; 40:63]

Di¤erence [0:54; 0:74] [4:29; 4:46] [1:52; 1:81] [�4:62;�4:25]
JPY/EUR

Short run [90:18; 99:32] [90:50; 102:71] [109:04; 124:02] [101:74; 115:52]

Long run [98:30; 108:07] [96:57; 109:85] [116:54; 132:53] [108:54; 123:26]

Di¤erence [8:12; 8:75] [6:07; 7:14] [7:50; 8:51] [6:79; 7:74]

Panel B: One standard deviation shock
USD/EUR

Short run [0:6613; 0:6616] [0:2630; 0:2639] [0:6023; 0:6045] [0:3139; 0:3180]

Long run [0:6566; 0:6570] [0:3161; 0:3170] [0:6269; 0:6296] [0:3914; 0:3957]

Di¤erence [�0:0047;�0:0046] [0:0531; 0:0531] [0:0246; 0:0251] [0:0775; 0:0777]

JPY/USD
Short run [0:8370; 0:8660] [0:2375; 0:3251] [0:9594; 1:0158] [0:3798; 0:5056]

Long run [0:8470; 0:8796] [0:2727; 0:3616] [0:9980; 1:0480] [0:3274; 0:4577]

Di¤erence [0:0100; 0:0137] [0:0352; 0:0364] [0:0322; 0:0386] [�0:0524;�0:0479]
JPY/EUR

Short run [0:5060; 0:5541] [0:4318; 0:4874] [0:6671; 0:7532] [0:6725; 0:7581]

Long run [0:5515; 0:6030] [0:4608; 0:5213] [0:7130; 0:8049] [0:7174; 0:8089]

Di¤erence [0:0455; 0:0488] [0:0289; 0:0339] [0:0459; 0:0517] [0:0449; 0:0508]
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Table A2: Min-max variance decompositions from the VAR speci�cation with human-taker and computer-
taker order �ow. The table shows the minimum and maximum triangular long-run variance decomposition
of returns, expressed in percent and calculated at the 30 minute horizon. That is, the table shows the
proportion of the long-run variation in returns that can be attributed to shocks to the human-taker order
�ow (HH + CH) and the computer-taker (CC +HC) order �ow, denoted H-taker and C-taker in the table
headings, respectively. For each currency pair we show the actual variance decomposition, and the proportion
of the explained variance in returns that can be attributed to each order �ow type. That is, we re-scale the
variance decompositions so that they add up to 100 percent. We show results for the full 2006-2007 sample
and for the three-month sub-sample, which only uses data from September, October, and November of
2007. There are a total of 717; 120 minute-by-minute observations in the full two-year sample and 89; 280
observations in the three-month sub-sample.

Full 2006-2007 sample 3-month sub-sample
H-taker C-taker H-taker C-taker

USD/EUR
Variance decomposition [29:25; 29:28] [4:71; 4:74] [25:78; 25:96] [7:08; 7:26]

Proportion of explained share [86:04; 86:14] [13:86; 13:96] [78:02; 78:58] [21:42; 21:98]

JPY/USD
Variance decomposition [27:71; 29:67] [2:31; 4:28] [26:03; 29:19] [4:21; 7:37]

Proportion of explained share [86:63; 92:77] [7:23; 13:37] [77:94; 87:40] [12:60; 22:06]

JPY/EUR
Variance decomposition [10:15; 12:16] [7:37; 9:39] [9:94; 12:67] [10:15; 12:88]

Proportion of explained share [51:93; 62:27] [37:73; 48:07] [43:55; 55:53] [44:47; 56:45]
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Table 1: Summary statistics for the one-minute return and order �ow data. The mean and standard deviation,
as well as the �rst-order autocorrelation, �, are shown for each variable and currency pair. The returns are
expressed in basis points and the order �ows in millions of the base currency. The summary statistics are given
for both the full 2006-2007 sample, as well as for the three-month sub-sample, which only uses observations
from September, October, and November of 2007. The �rst two rows for each currency show the summary
statistics for returns and the total market-wide order �ow. The following two rows give the results for the
order �ows broken down into human-takers and computer-takers and the last four rows show the results for
the order �ow decomposed into each maker-taker pair. There are a total of 717; 120 observations in the full
two-year sample and 89; 280 observations in the three-month sub sample. We show the statistical signi�cance
of the �rst order autocorrelation. The ���, ��, and � represent signi�cance at the 1, 5, and 10 percent level,
respectively.

Full 2006-2007 Sample 3-month sub sample
Variable Mean Std. dev. � Mean Std. dev. �

USD/EUR
Returns 0:0030 1:2398 �0:005��� 0:0080 1:2057 0:007��

Total order �ow (HH + CH +HC + CC) 0:0315 25:9455 0:150��� �0:0937 29:7065 0:174���

H-taker (HH + CH) 0:0413 23:977 0:155��� �0:0796 26:8096 0:189���

C-taker (HC + CC) �0:0099 9:9363 0:127��� �0:0140 12:8900 0:115���

H-maker/H-taker (HH) 0:1425 19:9614 0:177��� 0:0327 21:9211 0:209���

C-maker/H-taker (CH) �0:1012 8:8970 0:166��� �0:1123 10:7649 0:215���

H-maker/C-taker (HC) 0:0123 8:9232 0:152��� 0:0483 11:5856 0:150���

C-maker/C-taker (CC) �0:0222 2:7939 0:053��� �0:0623 3:9477 0:072���

JPY/USD
Returns �0:0007 1:6038 �0:010��� �0:0045 1:9110 0:007��

Total order �ow (HH + CH +HC + CC) 0:1061 20:0980 0:189��� �0:3439 23:6359 0:211���

H-taker (HH + CH) 0:0853 19:1127 0:190��� �0:2088 22:0344 0:204���

C-taker (HC + CC) 0:0209 8:3941 0:170��� �0:1351 11:5877 0:158���

H-maker/H-taker (HH) 0:1037 15:9972 0:209��� �0:1203 17:4612 0:226���

C-maker/H-taker (CH) �0:0184 6:9030 0:172��� �0:0885 9:1773 0:162���

H-maker/C-taker (HC) 0:0198 7:5686 0:198��� �0:0901 10:1673 0:191���

C-maker/C-taker (CC) 0:0011 2:4556 0:032��� �0:045 3:8751 0:026���

JPY/EUR
Returns 0:0024 1:5976 �0:053��� 0:0036 2:1398 �0:017���
Total order �ow (HH + CH +HC + CC) �0:0648 7:0941 0:152��� �0:1574 8:5978 0:147���

H-taker (HH + CH) �0:0497 5:7006 0:150��� �0:1216 6:2074 0:125���

C-taker (HC + CC) �0:0151 4:8409 0:146��� �0:0358 6:7000 0:131���

H-maker/H-taker (HH) �0:0172 4:4203 0:159��� �0:0600 4:3106 0:157���

C-maker/H-taker (CH) �0:0325 2:8912 0:129��� �0:0616 3:7197 0:092���

H-maker/C-taker (HC) �0:0095 4:5331 0:173��� �0:0264 6:0968 0:161���

C-maker/C-taker (CC) �0:0056 1:5558 0:023��� �0:0095 2:5621 �0:001
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Table 2: Summary statistics for the fractions of trade volume attributable to di¤erent trader combinations.
The table shows the fraction of the total volume of trade that is attributable to di¤erent combinations of
makers and takers. Results for the full 2006-2007 sample as well as for the three-month sub-sample, which
only uses data from September, October, and November of 2007, are shown. We show the average of the
daily fractions, calculated by summing up across all minutes within a day, and the standard deviations of
those daily fractions. For each currency, the �rst row shows the fraction of the total volume of trade where
a computer was involved on at least one side of the trade (i.e. as a maker or a taker). The second row shows
the fraction of the total volume where a human acted as a taker, the third row shows the fraction of the total
volume where a computer acted as a taker, and the following four rows shows the fractions broken down by
each maker-taker pair.

Full 2006-2007 Sample 3-month sub sample
Variable Mean Std. dev. Mean Std. dev.

USD/EUR
C-participation (V ol (CH +HC + CC)) 0:4163 0:1135 0:5386 0:0355

H-taker (V ol (CH +HH)) 0:7810 0:0791 0:6864 0:0331

C-taker (V ol (HC + CC)) 0:2190 0:0791 0:3136 0:0331

H-maker/H-taker (V ol (HH)) 0:5837 0:1135 0:4614 0:0355

C-maker/H-taker (V ol (CH)) 0:1973 0:0398 0:2251 0:0144

H-maker/C-taker (V ol (HC)) 0:1710 0:0514 0:2304 0:0205

C-maker/C-taker (V ol (CC)) 0:0480 0:0290 0:0831 0:0150

JPY/USD
C-participation (V ol (CH +HC + CC)) 0:4242 0:1065 0:5652 0:0364

H-taker (V ol (CH +HH)) 0:7585 0:0805 0:6461 0:0311

C-taker (V ol (HC + CC)) 0:2415 0:0805 0:3539 0:0311

H-maker/H-taker (V ol (HH)) 0:5758 0:1065 0:4348 0:0364

C-maker/H-taker (V ol (CH)) 0:1827 0:0304 0:2114 0:0126

H-maker/C-taker (V ol (HC)) 0:1860 0:0498 0:2486 0:0154

C-maker/C-taker (V ol (CC)) 0:0555 0:0321 0:1052 0:0193

JPY/EUR
C-involved (V ol (CH +HC + CC)) 0:6186 0:1154 0:7907 0:0410

H-taker (V ol (CH +HH)) 0:5557 0:1018 0:4037 0:0467

C-taker (V ol (HC + CC)) 0:4443 0:1018 0:5963 0:0467

H-maker/H-taker (V ol (HH)) 0:3814 0:1154 0:2093 0:0410

C-maker/H-taker (V ol (CH)) 0:1743 0:0360 0:1944 0:0164

H-maker/C-taker (V ol (HC)) 0:3337 0:0473 0:3734 0:0193

C-maker/C-taker (V ol (CC)) 0:1106 0:0673 0:2229 0:0464
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Table 3: Estimates of the ratio R = RC=RH. The table reports the mean estimates of the ratio R = RC=RH,
where RC = V ol(HC)=V ol(CC) and RH = V ol(HH)=V ol(CH). V ol(HH) is the daily trading volume
between human-makers and human-takers, V ol(HC) is the daily trading volume between human-makers and
computer-takers, V ol(CH) is the daily trading volume between computer-makers and human-takers, and
V ol(CC) is the daily trading volume between computer-makers and computer-takers. We report the mean
of the daily ratio R and the standard errors are shown in parantheses below the estimate. We also show the
number of days that had a ratio that was less than one. We report the results for the full 2006-2007 sample
and the three-month sub-sample, which only uses data from September, October, and November of 2007.
The ���, ��, and � represent a statistically signi�cant deviation from one at the 1, 5, and 10 percent level,
respectively.

Full 2006-2007 sample 3-month sub sample
USD/EUR

Mean of daily R = RC/RH 1:4463��� 1:3721���

Standard Error (0:0063) (0:0099)

No. of days with R < 1 0 0

No. of obs 498 62

JPY/USD
Mean of daily R = RC/RH 1:2619��� 1:1719���

Standard Error (0:0074) (0:0142)

No. of days with R < 1 15 4

No. of obs 498 62

JPY/EUR
Mean of daily R = RC/RH 1:6886��� 1:6242���

Standard Error (0:0154) (0:0250)

No. of days with R < 1 4 0

No. of obs 498 62
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Table 4: Regressions of realized volatility on the fraction of algorithmic trading. The table shows the results
from estimating the relationship between daily realized volatility and the fraction of algorithmic trading,
using daily data from 2006 and 2007. Robust standard errors are given in parentheses below the coe¢ cient
estimates. The left hand side of the table shows the results with a quarterly time trend included in the
regressions and the right hand side of the table shows the results with year-quarter time dummies (i.e., eight
time dummies, one for each quarter in the two years of data) included in the regressions. Panels A and
B show the results when the fraction of algorithmic trading is measured as the fraction of the total trade
volume that has a computer involved on at least one side of the trade (i.e. as a maker or a taker). Panels C
and D show the results when only the fraction of volume with computer taking is used. In addition to the
fraction of algorithmic trading and the control(s) for secular trends, 22 lags of volatility are also included
in every speci�cation. In all cases, only the coe¢ cient on the fraction of algorithmic trading is displayed.
Panels A and C show the results from a standard OLS estimation, along with the R2. Panels B and D show
the results from the IV speci�cation estimated with Limited Information Maximum Likelihood (LIML). In
Panels B and D, the Stock and Yogo (2005) F�test of weak instruments are also shown. The critical values
for Stock and Yogo�s (2005) F-test are designed such that they indicate a maximal actual size for a nominal
sized �ve percent test on the coe¢ cient in the LIML estimation. Thus, in order for the actual size of the
LIML test to be no greater than 10% (15%), the F-statistic should exceed 8:68 (5:33). There are a total of
498 daily observations in the data. The ���, ��, and � represent signi�cance at the 1, 5, and 10 percent level,
respectively.

With quarterly time trend With year-quarter time dummies
USD/EUR JPY/USD JPY/EUR USD/EUR JPY/USD JPY/EUR
Panel A. Fraction of volume with any computer participation, OLS estimation

Coe¤. on AT 0:0029 0:0018 0:0034��� 0:0078��� �0:0030 0:0065���

(0:0024) (0:0021) (0:0012) (0:0027) (0:0024) (0:0016)

R2 (%) 53:44% 61:13% 71:90% 56:73% 62:57% 73:33%

Panel B. Fraction of volume with any computer participation, IV estimation
Coe¤. on AT �0:0121� �0:0186�� �0:0022 �0:0078 �0:0101 �0:0128

(0:0062) (0:0089) (0:0039) (0:0061) (0:0069) (0:0175)

F-Stat 29:58 19:46 32:18 38:17 20:89 2:25

Panel C. Fraction of volume with computer-taking, OLS estimation
Coe¤. on AT 0:0037 �0:0027 0:0015 0:0094�� �0:0034 0:0032��

(0:0036) (0:0024) (0:0012) (0:0038) (0:0027) (0:0016)

R2 (%) 53:39% 61:17% 71:56% 56:43% 62:55% 72:66%

Panel D. Fraction of volume with computer-taking, IV estimation
Coe¤. on AT �0:0160�� �0:0215�� �0:0007 �0:0072 �0:0122 �0:0182

(0:0080) (0:0109) (0:0028) (0:0070) (0:0082) (0:0291)

F-Stat 39:99 17:63 64:81 55:45 21:20 1:04
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Table 5: We report the mean ratio of the exchange rate volatility (Panel A) and liquidity provision by
humans and by computers (Panel B) estimated during announcement days relative to that estimated during
non-announcement days. The one-hour measure is estimated using observations from 8:25 am to 9:24 am ET
and the one-minute measure is estimated using 8:30 am to 8:31 am ET observations. Announcement days are
de�ned as nonfarm payroll announcement days and non-announcement days are de�ned as 10 business days
before and after the nonfarm payroll announcement. In each panel, we report the chi-squared and p-value
of the Wald test that the ratio is equal to 1. In Panel C we report the chi-squared and p-value of the Wald
test that the liquidity provision of humans during announcement days relative to non-announcement days
is similar to the liquidity provision of computers. The statistics are estimated using data in the full sample
from 2006 to 2007 and there are 23 observations (April 6, 2007 nonfarm payroll announcement is missing
because it falls on Good Friday, when trading in the foreign exchange market is limited). Human liquidity
provision, LH, is de�ned as the sum of human-maker/human-taker volume plus human-maker/human-taker
volume divided by total volume. Computer liquidity provision, LC, is de�ned as the sum of computer-
maker/computer-taker volume plus computer-maker/human-taker volume divided by total volume. The ���,
��, and � represent signi�cance at the 1, 5, and 10 percent level, respectively.

USD/EUR JPY/USD JPY/EUR
Hour Minute Hour Minute Hour Minute

Panel A: Volatility
�a
�n

6:236��� 21:704��� 5:595��� 24:812��� 3:697��� 14:403��

�2 (H0 : �a = �n) 69:86 18:76 33:34 15:45 19:37 5:96

p-value 0:0000 0:0003 0:0000 0:0008 0:0002 0:0235

Panel B: Liquidity Provision
Liquidity provision by humans, LHa

LHn
0:964��� 1:062��� 1:023 1:183��� 0:888��� 0:980

Liquidity provision by computers, LCa
LCn

1:132��� 0:871��� 0:974 0:652��� 1:227��� 1:151

�2 (H0 : LHa = LHnorLCa = LCn) 16:56 9:04 2:71 31:91 25:19 0:5

p-value 0:0005 0:0067 0:1143 0 0:0001 0:487

Panel C: Comparison of Liquidity Provision between Humans and Computers
LHa
LHn

� LCa
LCn

�0:168��� 0:191�� 0:049 0:532��� �0:339��� �0:171
�2
�
H0 :

LHa
LHn

= LCa
LCn

�
19:24 5:91 1:50 36:07 25:21 0:66

p-value 0:0003 0:0241 0:2339 0:0000 0:0001 0:4245
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Table 6: Impulse responses from the VAR speci�cation with human-taker and computer-taker order �ow.
The table shows the impulse responses for returns as a result of shocks to the human-taker order �ow
(HH + CH) or computer-taker (CC +HC) order �ow, denoted H-taker and C-taker in the table headings,
respectively. The results are based on estimation of equation (2), using minute-by-minute data. In Panel A
we show the return response, in basis points, to a one-billion base-currency shock to one of the order �ows.
In Panel B we show the return response, in basis points, to a one standard deviation shock to one of the order
�ows. We show the results for the full 2006-2007 sample and for the three-month sub-sample, which only
uses data from September, October, and November of 2007. For each currency pair we show the short-run
(immediate) response of returns; the corresponding cumulative long-run response of returns, calculated as
the cumulative impact of the shock after 30 minutes; and the di¤erence between the cumulative long-run
response in returns minus the immediate response of returns, i.e., we provide the extent of over-reaction or
under-reaction to an order �ow shock. There are a total of 717; 120 minute-by-minute observations in the
full two-year sample and 89; 280 observations in the three-month sub-sample. We show in parenthesis the
standard errors of the di¤erence between the short-run and long-run response. These standard errors are
calculated by bootstrapping, using 200 repetitions.

Full 2006-2007 sample 3-month sub-sample
H-taker C-taker H-taker C-taker
Panel A: One billion base-currency shock

USD/EUR
Short run 28:06 26:94 23:20 25:22

Long run 27:87 32:35 24:16 31:38

Di¤erence �0:20 5:42 0:96 6:16

(0:29) (0:67) (0:72) (1:36)

JPY/USD
Short run 46:77 39:81 48:02 44:89

Long run 47:50 44:27 49:54 40:63

Di¤erence 0:74 4:46 1:52 �4:26
(0:48) (1:08) (1:36) (2:35)

JPY/EUR
Short run 99:32 102:71 124:02 115:52

Long run 108:07 109:85 132:53 123:26

Di¤erence 8:75 7:14 8:51 7:74

(1:50) (1:67) (4:79) (4:76)

Panel B: One standard deviation shock
USD/EUR

Short run 0:6617 0:2639 0:6045 0:3181

Long run 0:6570 0:3170 0:6296 0:3957

Di¤erence �0:0046 0:0531 0:0251 0:0777

(0:0068) (0:0065) (0:0189) (0:0172)

JPY/USD
Short run 0:8706 0:3269 1:0241 0:5098

Long run 0:8843 0:3635 1:0565 0:4614

Di¤erence 0:0137 0:0366 0:0324 �0:0483
(0:0090) (0:0089) (0:0289) (0:0267)

JPY/EUR
Short run 0:5572 0:4901 0:7587 0:7636

Long run 0:6063 0:5242 0:8108 0:8148

Di¤erence 0:0491 0:0341 0:0520 0:0512

(0:0085) (0:0080) (0:0294) (0:0314)
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Table 7: Variance decompositions from the VAR speci�cation with human-taker and computer-taker order
�ow. The table provides the long-run variance decomposition of returns, expressed in percent and calculated
at the 30 minute horizon, based on estimation of equation (2), using minute-by-minute data. That is, the
table shows the proportion of the long-run variation in returns that can be attributed to shocks to the human-
taker order �ow (HH + CH) and the computer-taker (CC +HC) order �ow, denoted H-taker and C-taker
in the table headings, respectively. For each currency pair we show the actual variance decomposition, and
the proportion of the explained variance in returns that can be attributed to each order �ow type. That
is, we re-scale the variance decompositions so that they add up to 100 percent. We show results for the
full 2006-2007 sample and for the three-month sub-sample, which only uses data from September, October,
and November of 2007. There are a total of 717; 120 minute-by-minute observations in the full two-year
sample and 89; 280 observations in the three-month sub-sample. We show in parenthesis the standard errors
calculated by bootstrapping, using 200 repetitions.

Full 2006-2007 sample 3-month sub-sample
H-taker C-taker H-taker C-taker

USD/EUR
Variance decomposition 29:27 4:74 25:92 7:25

(0:95) (0:19) (0:79) (0:42)

Proportion of explained share 86:06 13:94 78:14 21:86

(2:79) (0:56) (2:38) (1:27)

JPY/USD
Variance decomposition 29:31 4:22 28:59 7:22

(0:35) (0:11) (0:50) (0:33)

Proportion of explained share 87:41 12:59 79:84 20:16

(1:04) (0:33) (1:40) (0:92)

JPY/EUR
Variance decomposition 12:03 9:28 12:47 12:67

(0:21) (0:20) (0:38) (0:38)

Proportion of explained share 56:45 43:55 49:60 50:40

(0:99) (0:94) (1:51) (1:51)
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Table 8: Impulse responses from the VAR speci�cation with all four human/computer-maker/taker or-
der �ow combinations. The table shows the impulse responses for returns as a result of shocks to
the human-maker/human-taker order �ow (HH), computer-maker/human-taker order �ow (CH), human-
maker/computer-taker order �ow (HC), or computer-maker/computer-taker order �ow (CC), denoted in
obvious notation in the table headings. The results are based on estimation of equation (3), using minute-by-
minute data. In Panel A we show the return response, in basis points, to a one-billion base-currency shock to
one of the order �ows. In Panel B we show the return response, in basis points, to a one standard deviation
shock to one of the order �ows. We report the results for the full 2006-2007 sample and for the three-month
sub-sample, which only uses data from September, October, and November of 2007. For each currency pair
we show the short-run (immediate) response of returns; the corresponding cumulative long-run response of
returns, calculated as the cumulative impact of the shock after 30 minutes; and the di¤erence between the
cumulative long-run response in returns minus the immediate response of returns, i.e., we provide the extent
of over-reaction or under-reaction to an order �ow shock. There are a total of 717; 120 minute-by-minute
observations in the full two-year sample and 89; 280 observations in the three-month sub-sample. We show
in parenthesis the standard errors of the di¤erence between the short-run and the long-run response. These
standard errors are calculated by bootstrapping, using 200 repetitions.

Full 2006-2007 sample 3-month sub-sample
H-maker/ C-maker/ H-maker/ C-maker/ H-maker/ C-maker/ H-maker/ C-maker/
H-taker H-taker C-taker C-taker H-taker H-taker C-taker C-taker

Panel A: One billion base-currency shock
USD/EUR

Short run 27:64 29:66 26:57 32:19 20:58 30:94 28:94 21:74

Long run 30:13 20:47 29:89 24:92 24:18 23:35 34:64 5:94

Di¤erence 2:49 �9:19 3:32 �7:26 3:60 �7:59 5:70 �15:80
(0:35) (0:88) (0:83) (2:42) (0:97) (2:03) (1:79) (4:64)

JPY/USD
Short run 43:48 58:94 40:34 61:57 41:96 64:63 46:08 67:65

Long run 47:01 49:53 42:61 54:37 46:83 57:24 40:33 51:81

Di¤erence 3:53 �9:41 2:27 �7:20 4:87 �7:39 �5:75 �15:85
(0:59) (1:57) (1:30) (3:38) (1:62) (3:43) (2:89) (7:39)

JPY/EUR
Short run 102:61 92:16 100:91 102:04 139:33 103:92 114:01 94:47

Long run 116:12 91:24 107:18 93:41 159:46 96:85 118:47 95:20

Di¤erence 13:51 �0:92 6:27 �8:63 20:13 �7:07 4:46 0:74

(1:98) (3:18) (1:94) (4:98) (7:25) (9:35) (5:78) (10:70)

Panel B: One standard deviation shock
USD/EUR

Short run 0:5389 0:2575 0:2318 0:0893 0:4342 0:3211 0:3228 0:0845

Long run 0:5875 0:1777 0:2608 0:0692 0:5101 0:2424 0:3864 0:0231

Di¤erence 0:0486 �0:0798 0:0290 �0:0202 0:0760 �0:0788 0:0636 �0:0614
(0:0069) (0:0076) (0:0072) (0:0067) (0:0203) (0:0211) (0:0200) (0:0180)

JPY/USD
Short run 0:6721 0:3968 0:2962 0:1506 0:7019 0:5801 0:4544 0:2607

Long run 0:7267 0:3334 0:3129 0:1330 0:7834 0:5137 0:3976 0:1997

Di¤erence 0:0546 �0:0634 0:0167 �0:0176 0:0815 �0:0663 �0:0567 �0:0611
(0:0091) (0:0106) (0:0096) (0:0083) (0:0274) (0:0307) (0:0284) (0:0284)

JPY/EUR
Short run 0:4440 0:2629 0:4481 0:1583 0:5859 0:3829 0:6809 0:2409

Long run 0:5024 0:2603 0:4760 0:1449 0:6706 0:3568 0:7076 0:2428

Di¤erence 0:0584 �0:0026 0:0279 �0:0134 0:0847 �0:0260 0:0266 0:0019

(0:0086) (0:0091) (0:0086) (0:0077) (0:0306) (0:0344) (0:0345) (0:0273)
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Table 9: Variance decompositions from the VAR speci�cation with all four human/computer-maker/taker
order �ow combinations. The table provides the long-run variance decomposition of returns, expressed
in percent and calculated at the 30 minute horizon, based on estimation of equation (3), using minute-
by-minute data. That is, the table shows the proportion of the long-run variation in returns that can be
attributed to shocks to the human-maker/human-taker order �ow (HH), computer-maker/human-taker order
�ow (CH), human-maker/computer-taker order �ow (HC), and computer-maker/computer-taker order �ow
(CC), denoted in obvious notation in the table headings. We show the actual variance decomposition, and
the proportions of the explained variance in returns that can be attributed to each order �ow type. That is,
we re-scale the variance decompositions so that they add up to 100 percent. We present results for the full
2006-2007 sample and for the three-month sub-sample, which only uses data from September, October, and
November of 2007. There are a total of 717; 120 minute-by-minute observations in the full two-year sample
and 89; 280 observations in the three-month sub-sample. We show in parenthesis the standard errors, which
are calculated by bootstrapping, using 200 repetitions.

Full 2006-2007 sample 3-month sub-sample
H-maker/ C-maker/ H-maker/ C-maker/ H-maker/ C-maker/ H-maker/ C-maker/
H-taker H-taker C-taker C-taker H-taker H-taker C-taker C-taker

USD/EUR
Variance decomp. 20:71 4:73 3:89 0:58 14:19 7:68 7:86 0:59

(0:89) (0:24) (0:21) (0:04) (0:75) (0:48) (0:43) (0:09)

Proportion 69:24 15:81 13:01 1:94 46:80 25:33 25:92 1:95

(2:98) (0:80) (0:70) (0:13) (2:47) (1:58) (1:42) (0:30)

JPY/USD
Variance decomp. 18:62 6:48 3:70 0:93 14:47 9:78 6:12 2:00

(0:33) (0:15) (0:11) (0:04) (0:46) (0:41) (0:31) (0:13)

Proportion 62:63 21:80 12:45 3:13 44:70 30:21 18:91 6:18

(1:11) (0:50) (0:37) (0:13) (1:42) (1:27) (0:96) (0:40)

JPY/EUR
Variance decomp. 7:84 2:74 7:94 0:99 7:72 3:32 10:47 1:30

(0:16) (0:12) (0:19) (0:06) (0:29) (0:20) (0:42) (0:11)

Proportion 40:18 14:04 40:70 5:07 33:84 14:56 45:90 5:70

(0:82) (0:61) (0:97) (0:31) (1:27) (0:88) (1:84) (0:48)
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Figure 1: 50-day moving averages of participation rates of algorithmic traders 
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Figure 2: 50-day moving averages of participation rates broken down into four 
maker-taker pairs 
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Figure 3: Dollar-Yen Market on August 16, 2007 
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Figure 4: Volatility and Algorithmic Market Participation 

*Daily realized volatility is based on 1-minute returns. We show monthly observations 
**Share of algorithmic trading is at a monthly frequency 
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Figure 5: Deciles of Realized Volatility and AT Participation 
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1 Introduction

High frequency trading typically refers to trading activity that employs extremely fast au-
tomated programs for generating, routing, canceling, and executing orders in electronic
markets. High frequency traders submit and cancel a massive number of orders and execute
a large number of trades, trade in and out of positions very quickly, and finish each trading
day without a significant open position. High frequency trading is estimated to account for
at least half of the trading volume on equity and derivatives exchanges.

High frequency traders are very fast, but what valuable service do they provide to the
markets? Do they make prices more informative? Do they increase market liquidity? How
do they make money?

In this paper we study the distribution of transaction prices generated in an electronic
limit order market populated by orders from high frequency traders (machines) and low
frequency traders (humans). We focus on the period between two human transactions - a
very short period of time in a liquid market. We posit that during such a short horizon,
the impact of changes in the fundamentals is negligible. Therefore, we model the incoming
human buy order prices and sell order prices during the period as two iid sequences, arriving
according to exogenous Poisson processes. For tractability, we assume that the submitted
orders are of unit size and at infinitely divisible prices.1 We justify this simplification as
being appropriate for inter-trade intervals of relative homogeneity, in which the demand of
all the traders on the buy side is approximately the same, and also close to the quantity
that the individual traders on the sell side are willing to supply in a single trade.

Machines are assumed to be strategic uninformed liquidity providers. They have only
one advantage over the humans - the speed with which they can submit or cancel their
orders. Because of this advantage, machines dominate the trading within each period by
undercutting slow humans at the front of the book. This is only one of the strategies used
by actual high-frequency traders in real markets, and the only one we focus on.2 In the
language of the industry, machines aim to “pick-off” or “snipe out” incoming human orders.
However, we assume that machines do not carry their submitted orders across time, for the
fear of being picked off themselves. Thus, we assume that machines submit deterministic
orders that get immediately canceled if not executed, and then get resubmitted again. With
these actions, they shape the front of the limit order book.

When we model the optimization of the machine during the intra-trade period, we assume
that it knows the process that governs the arrivals of human orders, the distribution of
incoming human limit orders, and the values of existing orders in the book. In reality, the
machine needs to estimate these quantities by “pinging the book” - sending quick trial orders
and canceling them immediately. We do not model the estimation procedure, but assume it
has been done before the beginning of the interval.

Our findings are as follows. First, we derive formulas for the distributions of transaction

1In the actual limit order book environment, traders submit orders of different quantities at discrete price
intervals - ticks. At each tick, quantities get stacked up in accordance with a priority rule, e.g., time priority
or order size and then time priority. Our idealized model, with the order prices coming from a continuous
distribution and for one order only, can be thought of as taking the actual orders for multiple units stacked
up at each tick and “spreading” them between ticks.

2Other known high frequency trading strategies include (i) the collection of rebates offered by exchanges
for liquidity provision, (ii) cross-market arbitrage, and (iii) “spoofing” - triggering other traders to act.
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prices and transaction times for a given intra-trade period both with and without the ma-
chines. We find that the presence of a machine is likely to change the average transaction
price, even in the absence of new information. We also find that in the presence of a machine,
the shape of the transaction price density remains the same in the middle, between the bid
and the ask of the machine, the far tails of the density get thinner, while the parts of the
tails closer to the bid and the ask of the machine get fatter. In the presence of the machine,
mean intertrade duration decreases in proportion to the increase in the ratio of the human
order arrival rates with and without the presence of the machine. Trading volume goes up
by the same rate. In other words, if the humans submit orders ten times faster when the
machine is present, intertrade duration falls and trading volume increases by a factor of ten.

Second, we compute the optimal bid and ask prices for the machine that optimizes
expected profits subject to an inventory constraint. The inventory constraint prevents the
machine from carrying a significant open position to the next intra-human-trade period.
The optimal bid and the ask for the machine are close to being symmetric around the mean
value of the human orders, with the distance from the middle value being determined by
the inventory constraint–the less concerned the machine is about the size of the remaining
inventory, the closer its bid and the ask prices are to each other. The expected profit of an
optimizing machine is increasing in both the variance and the arrival frequency of human
orders.

Our two findings are interrelated; one the one hand, an optimizing machine is able to
make positive expected profits by “sniping” out human orders somewhat away from the
front of the book. On the other hand, execution of the “sniping” order submission strategy
results in a transaction price density with bulges near the front and thinner outer tails. In
fact, in a special case, the faster humans submit and vary their orders, the more profits the
machine makes.

Our model has a number of limitations. First, it is not an equilibrium model of a limit
order market like those of Parlour (1998), Foucault (1999), Biais, Martimor and Rochet
(2000), Parlour and Seppi (2003), Foucault, Kadan and Kandel (2005), Goettler, Parlour,
and Rajan (2005), Back and Baruch (2007), and Biais and Weill (2009), among others.
These papers aim to derive the equilibrium price formation process. In order to cope with
the large dimensionality of the state and action spaces of limit order markets, these studies
use stylized models with many simplifying assumptions. In contrast to the equilibrium
considerations, we study the formation of transaction prices given the distribution of orders,
which we take to be exogenous over very short periods of time.

Second, our model is not a dynamic expected utility maximization model like those of
Avellaneda and Stoikov (2008), Kuhn and Stroh (2009), and Rosu (2009). Those studies
assume specific functional forms that govern the traders’ preferences. We take the approach
of modeling the order submission process over a very short period of time without specifying
the traders’ preferences or their optimization problems. Our model is essentially a stationary
sequence of one-period models, and all that matters is what happens during the interval
between two trades.

While these limitations make our results less satisfactory from the equilibrium analysis
point of view, our approach is more pragmatic. Our results work for any possible (continu-
ous) distribution of orders - equilibrium or otherwise. Thus, if a model comes up with the
description of an equilibrium order submission process, we can plug it into our analysis and
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get the distributions of transaction prices and transaction times. Moreover, our results can
be easily applied to the transaction-level data. We make no assumptions about the (un-
observable) objectives of traders; we only make assumptions about their order submission
processes.

Finally, to our knowledge, this is the first model to formally investigate the impact of
high frequency trading on transaction prices, trading volume, and intertrade duration, as
well as to characterize the profits of a high frequency trader in terms of the properties of
low frequency traders.3

Our paper proceeds as follows. Section 2 studies the benchmark model without machines.
Section 3 compares the benchmark model to the model in which an infinitely fast machine
is present, and solves the optimization problem of the machine. Section 4 presents some
empirical implcations of our results. Section 5 concludes.

2 Benchmark Model: Identical (Slow) Traders

2.1 A Single Intra-Trade Period

The model setup is as follows. There are infinitely many (slow) traders who submit limit
orders into an electronic limit order book with the intent to buy or sell a single asset.

We make the following simplifying assumption:

Assumption 2.1 Each order is for one unit of the traded asset only.

We focus on a single intra-trade period, during which new buy and sell orders arrive into
the limit order book, where t = 0 represents the beginning of the period.

Buy order prices are assumed to be represented by a sequence of random variables Btn ,
where tn are Poisson arrival times of the buy orders, with intensity γB. Similarly, Ssm
represent sell order prices, and they arrive with intensity γS. We denote by µB, µS the
maximum buy order price and the minimum sell order price, respectively, among those that
are already resting in the book at the beginning of the interval, i.e, at t = 0.

The orders go out of the book either if they are executed or if they are canceled.4 We
denote by MB

t the maximum of existing buy order prices and by mS
t the minimum of existing

sell order prices at time t ≥ 0. Orders at time t > 0 consist of the resting orders as of t = 0
and the newly arrived orders.

We define the execution time of the next trade as

τ := inf{t : MB
t ≥ mS

t }

At execution time τ , the transaction price Pτ is set at the maximum buy price MB
τ if the

trade was triggered by the sell order that came in at time τ ; otherwise, the transaction price
is set at the minimum sell price mS

τ .
We introduce the following assumption, which presents a simple framework for studying

the randomness of the buy and sell orders:

3Cont, Stoikov, and Talreja (2008) present a stochastic stochastic model for the continuous-time dynamics
of a limit order book, but do not explicitly model high and low frequency traders.

4We will essentially assume away cancelations in what follows.
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Assumption 2.2 (i) Incoming buy orders Btn are iid with distribution FB, conditionally
on the information available by time t = 0. Similarly, incoming sell orders, Stn, are iid with
distribution FS. (ii) FB and FS have densities, and the densities are strictly positive for all
x for which 0 < Fi(x) < 1, i = B, S. (iii) Sell orders are independent from the buy orders.
(iv) Within the intra-trade interval, the maximum buy order, MB, and the minimum sell
order, mS, do not get canceled.

We begin by computing the the distributions of bid and ask prices, and the distribution
of the intra-trade time. We have the following result.

Proposition 2.1 Under our standing assumptions, we have the following:
(i) The distribution of the minimum sell order price among those that arrived by time t

is given by
FmSt (x) = 1− 1{x<µS}e

−tγSFS(x)

(ii) The distribution of the maximum buy order price among those that arrived by time
t is given by

FMB
t

(x) = 1{x≥µB}e
−tγB(1−FB(x))

(iii) Distribution of the time of trade is given by

P (τ > t) = P (MB
t < µS)P (mS

t = µS) +

∫ µS

µB

P (MB
t ≤ x)dFmSt (x)

= e−tγB(1−FB(µS))e−tγSFS(µS) +

∫ µS

µB

e−tγB(1−FB(x))tγSe
−tγSFS(x)dFS(x)

In particular, if the distributions of buy and sell order prices are the same, FB = FS = F ,
and γB is different from γS, then the distribution of the time of trade is given by

P (τ > t) = e−t(γB [1−F (µS)]+γSF (µS)) +
γS

γB − γS
e−tγB

[
et(γB−γS)F (µS) − et(γB−γS)F (µB)

]
If, moreover, the new orders take values only inside the initial bid-ask spread, that is,
F (µB) = 0, F (µS) = 1, then the distribution is that of the sum of two independent ex-
ponentials:

P (τ > t) =
γB

γB − γS
e−tγS − γS

γB − γS
e−tγB

If FB = FS = F and γB = γS = γ, we get

P (τ > t) = e−tγ(1 + tγ[F (µS)− F (µB)])

with the mean

E[τ ] =
1

γ
[1 + F (µS)− F (µB)]

This proposition gives us the full description of the distributions of bid and ask prices,
as well as that of the intra-trade time, as a functional of the distributions of buy and sell
orders and their frequency. Thus, it also gives us information about the volume in a given
interval of time. Interestingly, we see that in the symmetric case FB = FS = F the time
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of trade distribution depends on F only through its values F (µB) and F (µS) evaluated at
the initial bid and ask. Moreover, if also the new orders take values only inside the initial
bid-ask spread, the expected time to trade is the sum of the expected buy and sell arrival
times. Otherwise, the latter sum is the upper bound for the expected time to trade.

To illustrate this and subsequent results, we denote the range of buy order prices in the
limit order book by [A,B], and the range of sell order prices by [C,D] where B and D can
be infinite. In order to exclude uninteresting cases, we assume that

A ≤ C ≤ B ≤ D ,µB ∈ [A,B] , µS ∈ [C,D]

Corollary 2.1 Assume that FB is uniform on [A,B] and FS is uniform on [C,D], that
γB(D − C) 6= γS(B − A), and that the initial bid and ask can be ignored, that is, µB ≤ C,
µS ≥ B. Then,

P (τ > t) = e−tγS
B−C
D−C +

γS
(D − C)[ γB

B−A −
γS
D−C ]

[
e−tγS

B−C
D−C − e−tγB

B−C
B−A

]
with the mean

E[τ ] =
γB(D − C) + γS(B − A)

γSγB(B − C)

The above corollary presents the expression for the expected time to trade in a special
case when the distributions of buy and sell orders are assumed to be uniform. From the
corrolary, the expected time to trade, E[τ ], is large when B is close to C, so there is a small
overlap between the possible values of buy and sell orders. Moreover, the expected time
to trade is large if either the frequency for the arrival of buy orders or the frequency for
the arrival of sell orders (or both) is low. In contrast, the expected time to trade can get
shorter if the small overlap between the possible values for buy and sell orders can be made
up for by an increase in the buy or sell frequency or if low order arrival frequency can be
compensated by an increase in the buy-sell order overlap.

Next, we compute the distribution of transaction prices at a given time of trade, τ . We
first introduce the probability that, conditional on an order arriving, it was a buy order:

p :=
γB

γB + γS

Denote by A(τ) the event that the order that just came in and triggered the transaction
was a sell order, and by Ac(τ) the event that the transaction was triggered by an incoming
buy order. The transaction price is defined as

Pτ := MB
τ 1A(τ) +mS

τ 1Ac(τ)

Proposition 2.2 Under our standing assumptions, we have the following:
(i) The distribution of the maximum buy order price at the time of trade is given by, for

x ∈ [µB, B],
P (MB

τ ≤ x) = p(1− p)×[∫ x∧µS

µB

FB(x)− FB(y)

[(1− p)FS(y) + p(1− FB(y))]2
dFS(y) +

∫ x∧µS

µB

FS(y)

[(1− p)FS(y) + p(1− FB(y))]2
dFB(y)

]
6



+[FB(x)− FB(µS)]
p

p+ (1− p)FS(µS)− pFB(µS)]

+FS(µB)
1− p

p+ (1− p)FS(µB)− pFB(µB)

(ii) The distribution of the minimum sell price at the time of trade is given by, for x ≥ C,

P (mS
τ ≤ x) = p(1− p)×[∫ x∧µS

µB

1− FB(y)

[(1− p)FS(y) + p(1− FB(y))]2
dFS(y) +

∫ x∧µS

µB

FS(y ∧ x)

[(1− p)FS(y) + p(1− FB(y))]2
dFB(y)

]
+1{x>µS}[1− FB(µS)]

p

p+ (1− p)FS(µS)− pFB(µS)

+1{x>µB}FS(µB ∧ x)
1− p

p+ (1− p)FS(µB)− pFB(µB)

(iii) The distribution of the transaction price is given by, for x ∈ [µB ∨ C,D],

P (Pτ ≤ x) = p(1− p)×
∫ x∧µS

µB

FS(y)

[(1− p)FS(y) + p(1− FB(y))]2
dFB(y)

+FS(µB)
1− p

p+ (1− p)FS(µB)− pFB(µB)

+p(1− p)×
∫ x∧µS

µB

1− FB(y)

[(1− p)FS(y) + p(1− FB(y))]2
dFS(y)

+1{x>µS}[1− FB(µS)]
p

p+ (1− p)FS(µS)− pFB(µS)

If FB = FS = F and p 6= 1/2, this becomes

P (Pτ ≤ x) = 1{x>µB}
p(1− p)
1− 2p

[
1

p+ (1− 2p)F (µB)
− 1

p+ F (x ∧ µS)(1− 2p)

]

+F (µB)
1− p

p+ (1− 2p)F (µB)

+1{x>µS}[1− F (µS)]
p

p+ (1− 2p)F (µS)

If, in addition to FB = FS = F , we have p = 1/2, then we get

P (Pτ ≤ x) = 1{x>µB}F (x ∧ µS) + 1{x>µS}[1− F (µS)]

that is, FP = F in the interval (µB, µS).
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The four terms in the price distribution given in (iii) are due to the following: the first two
terms correspond to an incoming sell order being the new minimum and triggering the sale,
where the second, non-integral term corresponds to the states of the world in which none
of the buy orders that have arrived since the last trade is higher than the initial maximum
buy order µB (so that the transaction price equals µB); the last two terms correspond to an
incoming buy order being the new maximum and triggering the sale, where the very last,
non-integral term corresponds to the states of the world in which none of the sell orders that
have arrived since the last trade is lower than the initial minimum sell order µS (so that the
transaction price equals µS).

In the case FS = FB = F , denoting by f the density of F , the density of the transaction
price in the interval (µB, µS) is given by

fPτ (x) =
p(1− p)

[p+ F (x)(1− 2p)]2
f(x)

The factor multiplying f(x) is increasing in F (x) for p > 0.5. That is, if the buy orders are
more likely, then the density f of order prices is distorted in favor of high transaction prices.
The opposite is true if the sell orders are more likely.

Similarly, for a fixed and small value of F (x), the factor multiplying f(x) is decreasing
in p – increasing p means less sell orders and more buy orders, so that the probability of the
transaction price being small becomes lower. The opposte is true for a fixed and high value
of F (x).

Corollary 2.2 Assume now that FB is uniform on [A,B] and FS is uniform on [C,D], that
γB(D − C) 6= γS(B − A), and that the initial bid and ask can be ignored, that is, µB ≤ C,
µS ≥ B. Then, we have, for x ∈ [C,B],

P (Pτ ≤ x) =
p(1− p)(B − C)

p(D − C)− (1− p)(B − A)

×

[
1

p B
B−A + (p− 1) C

D−C + x
(

1−p
D−C −

p
B−A

) − B − A
p(B − C)

]
with the density

fP (x) = p(1− p) (B − C)(B − A)(D − C)

{pB(D − C) + (p− 1)C[B − A] + x[(1− p)(B − A)− p(D − C)]}2

If, in addition, D − C = B − A, the expected value of the price is, in terms of the liquidity
variable z = p

1−p = γB
γS

,

E[Pτ ] =
zB − C
z − 1

− z

(z − 1)2
(B − C) log(z)

and the variance is

V ar[Pτ ] =
z(B − C)2

(z − 1)2

[
1− z

(z − 1)2
(log z)2

]
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We see that with a loss of liquidity on the buy side (as z → 0), the expected price tends
to its lowest possible value C, and with the loss of liquidity on the sell side the expected
price tends to its highest possible value B. In either case, the variance tends to zero. It
can also be verified that the expected price is an increasing concave function of z, while the
variance is a concave function of z with a maximum at z = 1.5

Remark 2.1 A digression on equilibrium order submission processes. We must
caution the reader that although results obtained under the assumptions of symmetric dis-
tributions of buy and sell orders, FB = FS = F , are elegant and tractable, such symmetric
order distributions may not arise in a full information equilibrium. In fact, we show in
the appendix that, if the buyers are all identical, if they believe that the sellers follow the
same distribution FS = FB for their orders, and if they are risk-neutral, then the necessary
condition for the buyers leads to the distribution of the form

FB(x) = cB(vB − x)−2/3

where cB is a constant, and vB is the value the buyers assign to holding one unit of the asset.
6 However, under the analogous assumptions on the sellers, the necessary condition for the
sellers leads to the distribution of the form

FS(x) = 1− cS(x− vS)−2/3

Thus, the assumption of the form FB = FS = F is actually not tenable in such a full
information equilibrium.

2.2 Multiple Periods

In order to extend our model to a multi-period setting, we need to specify how the orders
change from one intra-trade period to another. We consider the case which will keep the
setup as stationary as possible. We assume that, conditional on the last transaction price,
P (k), buy order Bi(k + 1) in the next intra-trade period is given by

Bi(k + 1) = P (k)×Bi

where Bi are iid with distribution FB. In other words, the orders are equal to the previous
price randomly distorted by a multiplicative random factor (which means the log-order is
the previous log-price plus a random term). Set, without loss of generality, P (0) = 1 and
denote P (1) = P . The (conditional) distribution of the buy orders in the (k + 1)-st period
is

FB,k+1(x) = FB(x/P (k))

and similarly for sell orders. Assume now that the book is emptied after the previous trade.
It is then easily verified from Proposition 2.2 (iii) that in this model

FP (k+1)|P (k)(x) = FP (x/P (k)) (2.1)

5The variable z is one measure of liquidity - the difference between the arrival frequencies of buy and
sell orders. More broadly, liquidity reflects the ease with which an asset can be bought or sold without a
significant effect on its price. Thus, liquidity has a number of other dimensions that are not being captured
by z.

6For this to be a distribution function, x should take values less than a constant v < vB .
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where FP (k+1)|P (k) is the conditional distribution. In other words, we can write

P (k + 1) = P × P (k)

This means that the log-price is a random walk: it is obtained as a sum of iid random
variables each with the distribution of P = P (1). Thus, the distribution of the relative
return is

P (
P (k + 1)

P (k)
− 1) ≤ x) = FP (x+ 1)

So, under the assumptions of this section, in order to study the qualitative properties of
the returns distribution, it suffices to study the price distribution.

Moreover, we also see that, denoting by τk the times of trade,

Fτk+1|P (k)(t) = Fτk(t)

and thus the intra-trade distribution is stationary.

3 A Model With A Machine Trader

The setup of the model is the same as in the benchmark model with the addition of one
infinitely fast (from the point of view of other traders) high frequency trader. The high
frequency trader–the machine–is assumed to keep issuing the same buy order b and sell
order s, b < s, until a trade occurs. The orders b and s get immediately canceled if not
executed right away. This mimics the so-called “sniping” strategy – a strategy designed to
discover liquidity in the limit order book, or to “pick-off” orders already in the book.

We assume that the machine is so fast that it will always pick off a human sell order, Si,
before any other human trader whenever b ≥ Si, (machine buys for Si), unless Si is less than
the existing maximum buy order µB in the book, in which case the transaction is executed
at price µB. The assumption for the human buy orders, Bi, is similar.

Our objective is to compare a market with a machine to the one without it. Our com-
parison is non-strategic: in both setups, we maintain the same assumptions about the dis-
tributions and the arrival frequencies of the buy and sell orders. In a strategic setting, it is
quite possible that the presence of a machine would affect order human submission processes
and frequencies. However, we show that as in the benchmark case, the distribution of the
transaction prices depends on the arrival rates only through the ratio p = γB/(γB + γS).
Thus, if the arrival rates change by the same factor because of the machine presence, p will
not change, and there will be no effect on the price distribution. (On the other hand, there
might be effects from the changes in the orders distributions.)

We now proceed to examine the distributions of execution times and transaction prices.

Proposition 3.1 Assume µB < b < s < µS. The distribution of the time until next trade
is given by

P (τ > t) = P (MB
t < s)P (mS

t ≥ s) +

∫ s

b

P (MB
t ≤ x)dFmSt (x)
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= e−tγSFS(s)e−tγB(1−FB(s)) +

∫ s

b

tγSe
−tγSFS(x)e−tγB(1−FB(x))dFS(x)

In particular, if FB = FS = F and γB = γS = γ, we get

P (τ > t) = e−tγ[1 + tγ(F (s)− F (b))]

with the mean equal to

E[τ ] =
1

γ
[1 + F (s)− F (b)]

As we can see from the last expression, when µB < b < s < µS, FB = FS = F and γB =
γS = γ, denoting by γ0 the arrival rates in the benchmark case with no machine, the ratio of
the mean time between transactions with and without the machine is γ

γ0

1+F (s)−F (b)
1+F (µS)−F (µB)

, which

is less than γ
γ0

, but not less than half thereof. If the order arrival rates with the machine and
without the machine are the same, i.e., γ = γ0, then the presence of the machine speeds up
the trades, but not more than by a factor of two, on average. By construction, the volume
goes up, but not more than double.

If, however, the ratio γ
γ0

, is large, then the presence of the machine will speed up the

trades (lower inter-trade duration) in proportion to this ratio. The volume will also increase
by the same proportion.

We now present the result for the uniform distribution.

Corollary 3.1 Assume µB < C < b < s < B < µS, that FB is uniform on [A,B] and FS
is uniform on [C,D], and that γB(D − C) 6= γS(B − A). Then, we have

P (τ > t) = e−t[γB
B−s
B−A+γS

s−C
D−C ] +

γS
D − C

e−t[
γBB

B−A−
γSC

D−C ]

γB
B−A −

γS
D−C

[
ets[

γB
B−A−

γS
D−C ] − etb[

γB
B−A−

γS
D−C ]

]
with the mean

E[τ ] =
(B − A)(D − C)

γB(D − C)− γS(B − A)

×
[

γB(D − C)

γB(D − C)(B − s) + γS(B − A)(s− C)
− γS(B − A)

γB(D − C)(B − b) + γS(B − A)(b− C)

]
In Figure 1 we plot the density of the intra-trade time with and without the machine

for the uniform distribution of orders. In the presence of the machine, this density is more
concentrated on low values.
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Figure 1:  Density of intratrade time with and without the high-frequency trader.

Figure 2 shows the mean intra-trade times with and without the machine, as the supports
of the buy and sell orders distributions have decreasing overlap. Average intertrade duration
increases with less overlap, but the increase is steeper without machine.

 Mean time-to-trade
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Figure 2:  Mean intratrade time as the sell-buy gap increases.

The following is the main technical result of this section, while its economics consequences
are given in the corollary below.

Proposition 3.2 Assume µB < b < s < µS. The distribution of the transaction price Pτ is
given by:

P (Pτ ≤ x) = p(1− p)×[ ∫ x∧s

µB

FS(y)

[(1− p)FS(y ∨ b) + p(1− FB(y))]2
dFB(y)+

∫ x∧µS

b

1− FB(y)

[(1− p)FS(y) + p(1− FB(y ∧ s))]2
dFS(y)

]
+1{x>µB}FS(µB)

1− p
p+ (1− p)FS(b)− pFB(µB)
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+1{x>µS}[1− FB(µS)]
p

p+ (1− p)FS(µS)− pFB(s)

+p× 1{x>s}

∫ x∧µS

s

1

(1− p)FS(y) + p(1− FB(s))
dFB(y)

+(1− p)×
∫ x∧b

µB

1

(1− p)FS(b) + p(1− FB(y))
dFS(y)

In particular, in case FB = FS = F , the price density on the interval (µB, µS) is given by

dFP (x) = dF (x)

[
1{µB<x<b}

(1− p)[p+ (1− p)F (b)]

[(1− p)F (b) + p(1− F (x))]2
+ 1{b≤x<s}

p(1− p)
[(1− 2p)F (x) + p]2

+1{s≤x<µS}
p[1− p+ p(1− F (s))]

[(1− p)F (x) + p(1− F (s))]2

]
and, when in addition p = 1/2, on the interval (µB, µS) we have

dFP (x) = dF (x)

[
1{µB<x<b}

1 + F (b)

[F (b) + 1− F (x)]2
+ 1{b≤x<s} + 1{s≤x≤µS}

2− F (s)

[F (x) + 1− F (s)]2

]
The following is the main economic result of this section, and it is obtained by direct

examination of the price distribution given in the previous proposition, and the analogous
result for the benchmark case of no machine. Here, we assume that the order distributions
FB, FS and the probability of a buy order p are the same in the markets without and with
the machine.

Corollary 3.2 (i) Inside the interval [b, s] the density of the transacted price remains the
same as in the benchmark case. The far tails are more narrow, that is, the probabilities of
the price being equal to µB and µS are lower, and, if µB is low enough, the density is lower
for x greater than but close to µB, and analogously for x close to µS. The values of the
density are higher at values less than but close to b and at values larger than but close to s.

(ii) For a fixed price value µB < x < b1 < b2, its density fP (x) is higher if the machine
uses lower bid b1 than if it uses higher bid b2, and analogously for s1 < s2 < x < µS, the
density is higher if the machine uses the higher ask s2.

(iii) Assume now FB = FS = F where F is symmetric, and p = 1/2. If b and s are
chosen symmetrically so that F (b) = 1 − F (s), and the same is true for µB and µS, then
the mean value of the transacted price is the same as the mean value of the incoming human
orders, hence the same as the mean of the transacted price when there is no machine.

The intuition behind (i) is the following. The density remains the same on the interval
(b, s) because the transaction price will take a value in that interval if and only if the
transaction was between two human traders. Outside of this interval, but close to it, the
density is higher relative to the benchmark case, as now the orders outside the interval [b, s]
get picked off by the machine. To compensate, the density has to go down in the far tails.

From (i) we see that the effect on the variance is complex – the thinning of the far tails
would reduce the variance, but the fattening of the nearer parts of the tails has the opposite
effect. Whether the variance goes up or down will depend on the actual values of b, s, µB,
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µS, and on the distributions FB, FS. However, the higher even moments are likely to go
down, because of the thinning of the far tails. Furthermore, it can be verified that, if the
ratio fS(x)/fB(x) of the sell vs. buy order densities is bounded from above and away from
zero, then also bounded is the ratio of the density of the transaction price with machine
vs. that density without machine. Also, what we have just discussed is the variance of a
single transaction price. Let us recall that the time between transactions goes down in the
presence of the machine (at most by a factor of two). Thus, even if the variance of the single
transaction price goes up, the variance of the average transaction price per unit time may
go down.

The first part of item (ii) holds because there is higher density for values between b1 and
b2 if the machine uses b2, as it picks off those values, too. Thus, to compensate for this,
the density has to go down for values of x below b1 (the machine picks off fewer of those).
Similarly on the ask side.

Item (iii) gives conditions under which the mean price does not change. Perhaps more
interestingly, if these conditions are not satisfied, the mean price is likely to change, in
general. Thus, the presence of the sniping machine is likely to change the average transaction
price, even in the absence of new information, if the distributions of the sell orders and buy
orders are not symmetric, or if the machine’s bid and ask are not symmetric with respect
to the orders distribution.

In the case of the uniform distribution we get

Corollary 3.3 Assume µB < C < b < s < B < µS, that FB is uniform on [A,B] and FS
is uniform on [C,D], and that γB(D − C) 6= γS(B − A). Then, the density of the price for
x ∈ [C,B] is given by

fP (x) = 1{x<b}
p(1− p)(B − C)(B − A)(D − C) + (1− p)2(B − A)2(b− C)

[(1− p)(b− C)(B − A) + p(B − x)(D − C)]2

+1{b<x<s}
p(1− p)(B − C)(B − A)(D − C)

[(1− p)(x− C)(B − A) + p(B − x)(D − C)]2

+1{x>s}
p(1− p)(B − C)(B − A)(D − C) + p2(D − C)2(B − s)

[(1− p)(x− C)(B − A) + p(B − s)(D − C)]2

Figure 3 illustrates the conclusions of Corollary 3.2, showing the thinning of the far
tails of the density, the fattening for the values moderately away from the middle of the
distribution, and no change in the middle.
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Figure 3:  Price density when orders are uniform. 

Figures 4 and 5 show the means and the variances of the price with and without machine
presence, as the supports of the uniform distributions of orders have less and less overlap.7
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Figure 4: Mean price as the sell-buy gap increases.

7We decrease the overlap by moving to the right the support interval for the sell orders and keeping the
same the distribution of the buy orders.
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Figure 5: Price variance as the sell-buy gap increases.

The average values are almost identical in the two cases, while the variance with machine
is somewhat lower than without it, but the difference vanishes as the supports of the buy
and sell orders diverge.

3.1 Machine Optimization

Up to now, we assumed that the machine submits very fast buy and sell orders and can-
cels them if they are not executed. Under this assumption, machine does not learn from
transaction prices or the execution of orders.

Let us now assume that the machine will be issuing the same orders b and s until a
random time τ , which is less or equal to the first time a human order “steals” from the
machine a human sell order Si < b or a human buy order Bi > s. The machine interprets
the time τ as the first time some new information arrives in the market. For simplicity, we
assume that over very short intervals of time that we focus on, the machine models τ as a
random time independent of everything else, having exponential distribution with intensity
λ.8 Also for simplicity, we set µB = 0, µS =∞, that is, the book is initially empty.

Denote by Nb (Ns) the number of buys (sells) of the machine during the random period
[0, τ ]. Also denote

pS = P (b ≥ Si), pB = P (s ≤ Bi)

rS = E[Si1b≥Si ] , rB = E[Bi1s≤Bi ]

Note that Nb, Ns are conditionally binomial with probability pS, pB, and the number of
trials being Poisson with intensity γS, γB.

8If we require that τ is less or equal to the first “stealing time”, then it is not really independent of
everything, but we assume that the machine uses independence as an approximating assumption.
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Lemma 3.1 We have

E[Nb] =
1

λ
pSγS

E[Ns] =
1

λ
pBγB

and the expected profit from buying and selling, ignoring the value of inventory, is

E[P ] =
1

λ
rBγB −

1

λ
rSγS

Moreover, we have

E[N2
b ] =

1

λ
γSpS +

2

λ2
γ2
Sp

2
S

E[N2
s ] =

1

λ
γBpB +

2

λ2
γ2
Bp

2
B

E[NbNs] =
2

λ2
γSpSγBpB

We suppose that the machine trader maximizes expected profit/loss during the interval,
but penalized by the size of the inventory, and adjusted by the value of the remaining
inventory. More precisely, the machine maximizes

E[G] := E[P ]− ρE[(Ns −Nb)
2] + vE[Nb −Ns]

where ρ is a penalization parameter, or a Lagrange multiplier for the inventory constraint,
and v can be thought of as proportional to the estimated future value of the asset.

This problem is hard in general, and we only consider the case when the human orders
are uniformly distributed.

3.1.1 Uniformly distributed orders

Let us assume uniform distributions

FB(x) =
x− A
B − A

, FS(x) =
x− C
D − C

that is, Bi, Si are respectively uniform on [A,B], [C,D].

Lemma 3.2 If FB is uniform on [A,B] and FS is uniform on [C,D], then we have

pS = FS(b) =
b− C
D − C

pB = 1− FB(s) =
B − s
B − A

rS = FS(b)[C + FS(b)(D − C)/2] =
b2 − C2

2(D − C)

rB = (1− FB(s))[B − (1− FB(s))(B − A)/2] =
B2 − s2

2(B − A)
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Proposition 3.3 For maximizing E[G], the interior first order condition with respect to s
is

s[1 + ρ
4

λ
γB

1

B − A
] = ρ+ 4ρ

γB
λ

B

B − A
− 4ρ

γS
λ

b− C
(D − C)

+ v

The interior first order condition with respect to b is

b[1 + ρ
4

λ
γS

1

D − C
] = −ρ+ 4ρ

γS
λ

C

D − C
+ 4ρ

γB
λ

B − s
(B − A)

+ v

In particular, if
A = C,B = D, γB = γS = γ

then, the interior solutions are

s =
4ργ(A+B) + vλ(B − A)

λ(B − A) + 8ργ
+ ρ

b =
4ργ(A+B) + vλ(B − A)

λ(B − A) + 8ργ
− ρ

Introducing the mean and the variance of the human orders,

µ = (A+B)/2 , σ2 = (B − A)2/12

we get

s =
8ργµ+ v

√
12λσ√

12λσ + 8ργ
+ ρ

b =
8ργµ+ v

√
12λσ√

12λσ + 8ργ
− ρ

From this proposition we find that (assuming interior solutions) the machine places

orders centered around the mid-price 8ργµ+v
√

12λσ√
12λσ+8ργ

adjusted for the inventory penalty ρ. This

mid-price is less than the mean value of the incoming orders µ when the weight v given to
the expected future asset value is small, and is otherwise larger than µ. In addition, when
ρ = 0, then the optimal orders are simply b = s = v. Furthermore, when the trading interval
until the time of new information gets longer (λ closer to zero), then the machine orders
get closer to µ± ρ. The same happens when the frequency γ of human orders gets large, or
when the variance σ2 of human orders gets small. When γ gets small, the orders get close
to v ± ρ.

3.1.2 Orders symmetric around the mean

We again assume A = C, B = D, γb = γS. Everything simplifies if we only allow the orders
of the form

b = µ− x , s = µ+ x

As discussed above, this is close to optimal if the product λσ is small relative to the product
ργ. Moreover, as stated below, with this choice the expected inventory size is zero, E[Nb −
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Ns] = 0. Thus, the machine does not have to worry, in expected value sense, about the
future value of the asset.

If we optimize over x, it is easily seen that it is optimal to take

x = ρ.

Interpreting now ρ as a Lagrange multiplier, assume now we impose a constraint on the
inventory size as follows:

E[(Ns −Nb)
2] ≤ K (3.1)

The following result is easy to verify.

Proposition 3.4 Under our assumptions, we have

0 = pS − pB = E[Nb −Ns]

and thus
E[(Ns −Nb)

2] =
γ

λ
(pS + pB)

Moreover, the equality in (3.1) will be attained for ρ given by

ρ =
1

2
[1− λ

γ
K](B − A)

In particular,
b = µ− ρ ≥ A

Furthermore, the expected profit can be computed as

E[P ] =

√
3σ

2
K(2− λ

γ
K).

The highest inventory is attained for ρ = 0 which gives K = γ/λ. Thus, it suffices to
consider the values K < γ/λ. For K, it may be reasonable to take

K =
N2

λ2

where N is a given constant that represents the maximal allowed inventory size per unit
time.

The proposition above states that the machine’s profit is a linear increasing function of
the human orders’ volatility σ (in the domain K < γ/λ). In addition, the machine’s profit
is increasing in the frequency of human orders γ.

The machine’s profit is bounded by
√

3σ
2

γ
λ
. Thus, if there were increasingly many ma-

chines, as the total profit would have to be shared, the profit for each one would be decreas-
ing.

If we constrain the absolute size of inventory rather than its size per unit time, that is,
if K is kept fixed in a way that it does not depend on λ, the machine’s profit is increasing
in the mean length of the trading interval 1/λ. This is because more trades are likely to
be executed. This is also the case if we limit the inventory size per unit time, that is, K
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is proportional to 1/λ2, but only in the domain consisting of 1/λ small enough. For large
enough 1/λ, if the inventory per unit time is limited, then the machine’s profit is decreasing
in 1/λ.

From the expression for ρ we conclude that the machine provides less liquidity, in the
sense that ρ is larger, in the following cases: 1) the market is more volatile so that the
volatility of the orders is larger (that is, B − A is larger); 2) the humans are trying harder
to change their positions, that is, frequency γ is higher; 3) the value of K does not depend
on λ and there is less new information coming in, that is, λ is lower; 4) the value of K is
proportional to 1/λa for a > 2 and there is more new information coming in, that is λ is
higher. Note that item 1) implies, supposing that in the time of crisis the volatility and the
frequency of orders are higher, and supposing λ does not change much, that the machine
will provide less liquidity (wider bid-ask spread) when there is crisis.

Finally, we remark that if humans had perfect knowledge about the machine’s strategy,
then the humans would submit only orders with values inside the interval [b, s]. If they did
this by choosing values from a continuous distribution on [b, s], the machine would not be
able to make any trades, and would have zero profit. On the other hand, with this knowledge
it might be optimal for humans to submit orders with values b or s with positive probability,
which would place us outside of the assumptions of our model. However, because b and s
can change from one intra-trade interval to another, it is unlikely that humans would be
able to know their exact values.

4 Empirical Implications

Our results have a number of empirical implications. First, the distribution of transaction
prices (and returns) in markets with high frequency traders can be represented as a “mixture”
of the distributions of human-human and machine-human transaction prices (plus machine-
machine prices, if there is more than one machine). With the knowledge of counterparties
for each transaction, one can reconstruct the mixture. In addition, if machine strategies
can, indeed, be closely approximated by a deterministic process (e.g., bracketing the last
human transaction price), then the component of the price distribution attributed to the
machines should be forecastable. As the proportion of transactions with the machines grows,
forecastability of transaction prices should improve.9

Second, trading volume and intertrade duration, as well as measures of market liquidity
based on them, should increase in direct proportion to how much humans change the speed
of their orders when the machine is present. To the extent that it is known how many order
per unit time have been submitted (modified or canceled) by machines and humans, this
implication can be verified in the data.

Third, profits of a high frequency trader should increase in both the variance and the
arrival frequency of human orders. Again, to the extent that both the arrival frequency and
the variance of human orders can be estimated, they can be empirically compared to the
profits and losses of a high frequency trader, as well as these traders as a group.

9Even if that component of the prices is forecastable, this does not mean that one can trade on it. It
would take a machine that’s faster than the fastest current machine to take advantage of this empirical
regularity.
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5 Conclusion

We model an electronic limit order market populated by low frequency traders and then add
a high frequency trader. We postulate that low frequency traders (humans) follow certain
order submission strategies and then derive the distributions of transaction prices with and
without a high frequency trader (the machine).

We find that the presence of a machine is likely to change the average transaction price,
even in the absence of new information. We also find that in a market with a high frequency
trader, the distribution of transaction prices has more mass around the center and thinner
far tails. With a machine, mean intertrade duration decreases in proportion to the increase
in the ratio of the human order arrival rates with and without the presence of the machine;
trading volume goes up by the same rate.

We also find that a machine that optimizes expected profits subject to an inventory
constraint submits orders that are essentially symmetric around the mean value of the human
orders. The distance between the machine’s bid and ask prices increases with its concern
about the size of the remaining inventory. The expected profit of an optimizing machine
increases in both the variance and the arrival frequency of human orders.

Our model has two serious limitations. First, we do not solve for mutually best responses
of all parties; in other words, the order submission strategy that we postulate for the humans
may or may not be supported as an equilibrium strategy under general conditions. Second,
our model is static; we focus on a stationary sequence of one-period models–intervals between
two human trades.

Having said that, to our knowledge, this is the first model to formally investigate the
impact of high frequency trading on transaction prices, trading volume, and intertrade
duration, as well as to characterize the profits of a high frequency trader as a function of
the properties of low frequency traders.
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Appendix

Proofs for Section 2

Proof of Proposition 2.1: Conditioning on the number of sell orders, we get

FmSt (x) =
∞∑
k=o

[1− 1{x<µS}(1− FS(x))k]
(tγS)k

k!
e−tγS

which proves the result. Similarly for FMB
t

.
Next,

P (τ > t) = P (MB
t < mS

t )

which gives the desired expression.
If FS = FB = F , then the integral can be easily computed explicitly to get the result.

Proof of Proposition 2.2: Denote by KB
τ , KS

τ the number of newly arrived buy and
sell orders in the book at the time of trade, by MB(r), mS(q) the maximum of r buy orders
and µB, and the minimum of q sell orders and µS, and by B(r), S(q) the r−th incoming
buy order and the q−th incoming sell order. Let us also denote B(r, q) the event that, given
that there are r buy orders (plus µB) in the buy side of the book, and q sell orders (plus µS)
in the sell side of the book, the last order was a buy order. Similarly for S(r, q), except the
sell order was the last. Then, we have

P (B(r, q)) =

(
r − 1 + q

q

)
pr(1− p)q

P (S(r, q)) =

(
r − 1 + q

r

)
pr(1− p)q

Notice that we have
∞∑
q=0

(
r − 1 + q

q

)
(1− p)q = p−r

∞∑
r=0

(
r − 1 + q

r

)
pr = (1− p)−q

Also note that we have

P (mS(q) ≤ x) = 1− 1{x<µS}(1− FS(x))q

so that
dFmS(q)(x) = 1{x<µS}q(1− FS(x))q−1dFS(x)

and similarly
P (MB(r) ≤ x) = 1{x≥µB}(FB(x))r

dFMB(r)(x) = 1{x≥µB}r(FB(x))r−1dFB(x)
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Using the above, we have

P (MB
τ ≤ x) =

∑
r,q

P (MB
τ ≤ x,KB

τ = r,KB
τ = q)

=
∑

r≥1,q≥0

P (MB
τ ≤ x,KB

τ = r,KB
τ = q, B(r, q)) +

∑
r≥0,q≥1

P (MB
τ ≤ x,KB

τ = r,KB
τ = q, S(r, q))

=
∑

r≥1,q≥0

P (B(r, q))P (MB(r) ≤ x,MB(r − 1) ≤ mS(q) ≤ B(r))

+
∑

r≥0,q≥1

P (S(r, q))P (S(q) < MB(r) ≤ min{x,mS(q − 1)})

Conditioning on mS(q) in the first term and on MB(r) in the second term, we get

P (MB
τ ≤ x) = 1{x>µB}

∑
r≥1,q≥0

∫ x∧µS

µB

P (B(r, q))F r−1
B (y)[FB(x)− FB(y)]q(1− FS(y))q−1dFS(y)

+1{x>µS}
∑

r≥1,q≥0

P (B(r, q))P (mS(q) = µS)F r−1
B (µS)[FB(x)− FB(µS)]

+
∑

r≥0,q≥1

∫ x∧µS

µB

P (S(r, q))FS(y)[1− FS(y)]q−1rF r−1
B (y)dFB(y)

+1{x>µB}
∑

r≥0,q≥1

P (S(r, q))P (MB(r) = µB)[1− FS(µB)]q−1FS(µB)

Inside the first integral we have a sum of the form∑
r,q

(
r − 1 + q

q

)
qxq−1yr−1

This is a derivative with respect to x of the sum∑
r,q

(
r − 1 + q

q

)
xqyr−1 =

∑
r

yr−1

(1− x)r

Thus, taking the derivative, we get the sum

1

(1− x)2

∑
r

r

(
y

1− x

)r−1

=
1

(1− x)2

1

(1− y
1−x)2

Setting
x = (1− p)(1− FS(y)) , y = pFB(y)

we get the result for the first integral in the distribution of MB. The second integral is
obtained in a similar manner, and the second and fourth non-integral terms are obtained by
direct summation, taking into account that

P (MB(r) = µB) = F r
B(µB) , P (mS(q) = µS) = [1− FS(µS)]q
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Similarly, we have

P (mS
τ ≤ x) =

∑
r,q

P (mS
τ ≤ x,KB

τ = r,KB
τ = q)

=
∑

r≥1,q≥0

P (B(r, q),MB(r − 1) ≤ mS(q) ≤ x ∧B(r))

+1{x>µS}
∑

r≥1,q≥0

P (B(r, q))P (mS(q) = µS)F r−1
B (µS)[1− FB(µS)]

+
∑

r≥0,q≥1

P (S(q) ≤ x ∧MB(r),MB(r) ≤ ms(q − 1), S(r, q))

+
∑

r≥0,q≥1

P (S(r, q))P (MB(r) = µB)[1− FS(µB)]q−1FS(x ∧ µB)]

Similarly as above, conditioning on mS(q) in the first two terms and on MB(r) in the last
two terms, and by summation, we get the result.

The distribution of the transaction prices is now easily determined as above, from its
definition.

Derivations related to Remark 2.1

Let x be a submitted buy order. Denote

pB1 (x) = P (x executed at arrival)

pB2 (x) = P (x executed after arrival)

and similarly pSi (x) if x is a sell order.
Let us suppose that a buy trader has the value v for the asset, at the time of the next

trade. Given that the trader submits a buy order x, and his utility function is U , denoting
by τx the time of his arrival and recalling that mS

t denotes the minimum sell order in the
book at time t, his expected profit is

p1E[U(v −mS
τx) | x executed at arrival] + p2U(v − x)

Let us now change the variables to
u := FB(x)

and denote by π(u) the corresponding expected profit. Then, u is uniformly distributed,
and a necessary condition for a symmetric equilibrium is that π′(u) = 0.

Proposition 5.5 We have

pB1 (x) =

∫ x

0

dFS(y)
γSγB

[2γB + γSFS(y)− γBFB(y)]2

pB2 (x) =
γBγSFS(x)

{2γB + γSFS(x)− γBFB(x)}{γB[1− FB(x)] + γSFS(x)}
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In case FS = FB, γS 6= γB, and in terms of variable u, we can write (with a slight abuse of
notation p1),

pB1 (u) =
γSγB
γS − γB

(
1

2γB
− 1

2γB + (γS − γB)u
)

We also have

pS1 (x) =

∫ ∞
x

dFB(y)
γSγB

[γB + γS + γSFS(y)− γBFB(y)]2

pS2 (x) =
γBγS[1− FB(x)]

{γB + γS + γSFS(x)− γBFB(x)}{γB[1− FB(x)] + γSFS(x)}
Moreover, the density of the minimum of sell orders at time of arrival of buy order x, denoted
fmx , lives on (0, x), and is given by

fmx (z) = 1{x>z}
(pB1 )′(z)

pB1 (x)

Similarly, the density of the maximum of sell orders at time of arrival of sell order x, denoted
fMx , lives on (x,∞), and is given by

fMx (z) = −1{z>x}
(pS1 )′(z)

pS1 (x)

Let us assume linear utility for the buyer. Denote by A1 the event that buy order x is
executed at arrival. Then, the trader’s utility is

pB1 (x)E[v −mS
τx|A1] + (vB − x)pB2 (x) = pB1 (x)vB −

∫ x

0

z(pB1 )′(z)dz + (vB − x)pB2 (x)

If FB = FS, we get
pB1 (x) = F (x)/4 , pB2 (x) = F (x)/2

In terms of the variable F (x) = u, denoting by β the inverse of F , this then becomes

1

4
[vBu−

∫ β(u)

0

zF ′(z)dz] +
1

2
u[vB − β(u)]

Taking derivative, setting it equal to zero, solving the obtained ODE for β(u) and inverting,
we get

F (x) = c(vB − x)−2/3

A similar computation for the seller gives

F (x) = 1− c(x− vS)−2/3

Thus, the assumption of FS = FB is not tenable in this equilibrium.
Proof of Proposition 5.5: The execution probability can be decomposed over the

event that the order was executed as as soon as it arrived, and over the event that it was
executed later, but before any other order was executed. The probability over the first event,
by conditioning over the time t of the arrival of x, over the number r of buy orders by time
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t and the number q of sell orders by time t, and over the minimum y of those q sell orders,
is given by

p1 := P (x executed at arrival)

=
∑

r≥0,q≥1

∫ ∞
0

γBe
−γBtdt

∫ x

0

q(1− FS(y))q−1dFS(y)e−γBt
(γBt)

r

r!
e−γSt

(γSt)
q

q!
F r
B(y)

=
∑
q≥1

∫ ∞
0

γBe
−γBtdt

∫ x

0

q(1− FS(y))q−1dFS(y)e−γBt[1−FB(y)]e−γSt
(γSt)

q

q!

=

∫ ∞
0

γSγBte
−γBtdt

∫ x

0

dFS(y)e−γBt[1−FB(y)]e−γStFS(y)

=

∫ x

0

dFS(y)
γSγB

[γB(2− FB(y)) + γSFS(y)]2

Denote now, similarly as before, by S(r, q) the event that at the execution of order x,
there were r buy orders and q sell orders that arrived after x, which necessarily implies that
q ≥ 1, and that the last order that arrived was a sell order. The probability of execution of
x at some time after it arrived can be obtained by conditioning over the time t of the arrival
of x, over the number k of buy orders by time t and the number l of sell orders by time t,
and on the number r of buy orders and the number q of sell orders that arrived between
time t and the time of execution. This probability is given by

p2 := P (x executed after arrival)

=
∑

k≥0,l≥0

∑
r≥0,q≥1

∫ ∞
0

γBe
−γBtdte−γBt

(γBt)
k

k!
e−γSt

(γSt)
l

l!

×P (MB(k) < x < mS(l), S(r, q),MB(r) ∨ S(q) ≤ x < mS(q − 1))

=
∑

r≥0,q≥1

∫ ∞
0

dtγBe
−γBt[2−FB(x)]e−γStFS(x)P (S(r, q),MB(r) ∨ S(q) ≤ x < mS(q − 1))

=
γB

γB(2− FB(x)) + γSFS(x)

∑
r≥0,q≥1

(
r − 1 + q

r

)
pr(1− p)qF r

B(x)FS(x)[1− FS(x)]q−1

=
γB

γB(2− FB(x)) + γSFS(x)

∑
q≥1

(1− p)qFS(x)[1− FS(x)]q−1

[1− pFB(x)]q

=
γB

γB[2− FB(x)] + γSFS(x)

(1− p)FS(x)

p[1− FB(x)] + (1− p)FS(x)

For pSi the proof is similar.
Recall that A1 is the event that buy order x is executed at arrival. Let us now compute

P (mS
τx ≤ z|A1) by computing

P (mS
τx ≤ z, A1)

= 1{x≤z}P (A1)+1{x>z}
∑

r≥0,q≥1

∫ ∞
0

γBe
−γBtdt

∫ z

0

q(1−FS(y))q−1dFS(y)e−γBt
(γBt)

r

r!
e−γSt

(γSt)
q

q!
F r
B(y)
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= 1{x≤z}p1(x) + 1{x>z}

∫ z

0

dFS(y)
γSγB

[γB(2− FB(y)) + γSFS(y)]2

Thus, we get

P (mS
τx ≤ z|A1) = 1{x≤z} + 1{x>z}

p1(z)

p1(x)

Therefore, the corresponding (conditional) density, denoted fmx , lives on (0, x), and is given
by

fmx (z) = 1{x>z}
p′1(z)

p1(x)

Proof is similar for the sell side.

Proofs for Section 3

Proof of Proposition 3.1: Similarly as with no machine, using the expressions for the
distributions of MB

t and mS
t .

Proof of Proposition 3.2: We have

P (Pτ ≤ x) =
∑

r≥0,q≥1

P (S(r, q))P (S(q) < MB(r) ≤ min{x, s,mS(q − 1)},mS(q − 1) > b)

+
∑

r≥1,q≥0

P (B(r, q))P (MB(r − 1) < s,MB(r − 1) ∨ b ≤ mS(q) ≤ B(r) ∧ x)

+
∑

r≥1,q≥0

P (B(r, q))P (s ∨MB(r − 1) ≤ B(r) ≤ mS(q) ∧ x,MB(r − 1) < s,mS(q) > b)

+
∑

r≥0,q≥1

P (S(r, q))P (MB(r) ≤ S(q) ≤ b ∧ x,MB(r) < s,mS(q − 1) > b)

The first term comes from the last order being a human sell order and trading with a
human buy order in the book, and the second term from the last order being a human buy
order and trading with a human sell order in the book. The third term comes from an
incoming buy order trading with the machine, and the fourth term comes from an incoming
sell order trading with the machine. The first two terms are computed similarly as with no
machine. Conditioning on B(r) in the third term and on S(q) in the fourth, and computing
the summations similarly as with no machine, we get the result.

Proof of Corollary 3.3: From the proposition, we have

P (Pτ ≤ x) = 1{x<b}
p(1− p)

(B − A)(D − C)

∫ x

C

y − C
[(1− p) b−C

D−C + p B−y
B−A ]2

dy

+1{x>b}
p(1− p)

(B − A)(D − C)

∫ x∧s

b

y − C
[(1− p) y−C

D−C + p B−y
B−A ]2

dy
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+1{x<s}
p(1− p)

(B − A)(D − C)

∫ x

b

B − y
[(1− p) y−C

D−C + p B−y
B−A ]2

dy

+1{x>s}
p(1− p)

(B − A)(D − C)

∫ x∧B

s

B − y
[(1− p) y−C

D−C + p B−s
B−A ]2

dy

+1{x>s}
p

B − A

∫ x∧B

s

1

(1− p) y−C
D−C + p B−s

B−A
dy

+
1− p
D − C

∫ x∧b

C

1

(1− p) b−C
D−C + p B−y

B−A
dy

We then get the density by differentiating.
Proof of Lemma 3.1: We have

E[N2
b |τ ] = E

 ∞∑
n=1

(
n∑
i=0

1b>Si

)2

e−γSτ
(γSτ)n

n!

∣∣∣τ


=
∞∑
n=1

[npS(1− pS) + n2p2
S]e−γSτ

(γSτ)n

n!

= γSτpS + γ2
Sτ

2p2
S

After integrating over τ , we get

E[N2
b ] =

1

λ
γSpS +

2

λ2
γ2
Sp

2
S

and analogously

E[N2
s ] =

1

λ
γBpB +

2

λ2
γ2
Bp

2
B

Similarly, we have

E[NbNs|τ ]

= E[Nb|τ ]E[Ns|τ ]

= τ 2pSγSpBγB

so that

E[NbNs] =
2

λ2
γSpSγBpB

The other expressions are proved in a similar fashion.

Proof of Proposition 3.3:
Since with uniform distribution we have

rS =
b2 − C2

2(D − C)
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rB =
B2 − ŝ2

2(B − A)

we need to maximize
1

λ
γB[

B2 − s2

2(B − A)
]− 1

λ
γS

b2 − C2

2(D − C)

−ρ

[
1

λ
γB

B − s
B − A

+
1

λ
γS

b− C
D − C

+
2

λ2

(
γB

B − s
B − A

− γS
b− C
D − C

)2
]

The interior first order condition with respect to s is

s[1 + ρ
4

λ
γB

1

B − A
] = ρ+ 4ρ

γB
λ

B

B − A
− 4ρ

γS
λ

b− C
(D − C)

The interior first order condition with respect to b is

b[1 + ρ
4

λ
γS

1

D − C
] = −ρ+ 4ρ

γS
λ

C

D − C
+ 4ρ

γB
λ

B − s
(B − A)

If A = C, B = D, γB = γS = γ, then, if we add the two conditions we get

(s+ b)α = β

where

α = [1 + ργ
8

λ

1

B − A
]

and

β = 8ρ
γ

λ

A+B

B − A
Subtracting we get

(s− b)κ = δ

where
κ = 1

and
δ = 2ρ

Solving this we get

s =
κβ + αδ

2κα

b =
κβ − αδ

2κα

and substituting we get

s =
4ργ(A+B)

λ(B − A) + 8ργ
+ ρ

b =
4ργ(A+B)

λ(B − A) + 8ργ
− ρ
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Market Access Risk Management Recommendations

April 2010

On behalf of the Futures Industry Association Market Access Working Group, we are pleased 
to present recommendations for managing the risk of direct access trading. Recognizing 
the importance of promoting best practices in this area, the FIA board of directors in 
January 2010 agreed to assemble a committee to formulate best practices for direct access 
to exchanges. The group includes representatives from clearing firms, trading firms, and 
exchanges. The scope of their work includes pre-trade order checks, post-trade checks, co-
location policies, conformance testing, and error trade policies.

The study will be shared with futures and options exchanges around the world. Later this 
year, FIA plans to survey exchanges that offer direct access to determine what types of risk 
controls are in place and publish the results of the survey.  

We appreciate the time and resources the members of the  Market Access Working Group 
contributed to the creation of this document. This is not the first group FIA has convened 
to address risk management practices. In 2004, FIA published a series of recommendations 
on error trade polices. In 2007, FIA published the results of a survey on risk controls at key 
exchanges. In 2009, the FIA/FOA Clearing Risk Study included recommendations for pre- 
and post-trade risk controls. 

We expect the need for risk controls to continue to evolve as the industry evolves and FIA is 
committed to monitoring and supporting practices and procedures that improve the integrity 
of the markets.

Yours truly,

Peter Johnson
Chairman
Market Access Working Group

FIA Market Access Working Group
The following organizations participated in the development of the FIA Market Access Risk 
Management Recommendations:

•	Bank of America Merrill Lynch
•	Barclays Capital
•	CME Group
•	Credit Suisse
•	DRW Trading
•	Eurex
•	Geneva Trading

•	IntercontinentalExchange
•	J.P. Morgan Futures
•	Newedge Group
•	Nico Trading
•	NYSE Liffe
•	XR Trading

The FIA is the U.S.-based international trade association which acts as a principal spokesman for 
the futures and options industry. Its membership includes the world’s largest futures brokers as well as 
derivatives exchanges from more than 20 countries.
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Market Access Risk Management Recommendations

Managing the risk of providing direct access to an exchange’s network is a critically 
important responsibility of all parties involved in the process—clearing firms, exchanges, and 
the direct access firms themselves. However, managing such risk must be done in a manner 
that does not disadvantage one direct access firm over another solely because it, or its clearing 
firm, endeavors to act more responsibly. This can only be done if exchanges themselves 
provide basic risk management tools, and construct them in such a manner that latency is 
identical to all direct access firms, no matter how clearing firms utilize such tools. Indeed, this 
will encourage the clearing firm to employ such tools in the most responsible fashion, without 
fear that it will lose business to other clearing firms that do not act so responsibly. 

Recognizing the importance of promoting best practices in risk management of direct access 
trading, the FIA board of directors in January 2010 established a Market Access Working 
Group to identify risk-specific controls that are already in place at exchanges, clearing and 
trading firms and recommend controls that should be in place as a matter of best practice 
before allowing direct access. The MAWG consists of representatives from clearing firms, 
exchanges, and trading firms. The group has been meeting since January to agree on 
recommendations for pre- and post-trade risk controls, co-location, conformance testing, and 
error trade policies. 

Latency-sensitive traders, which rely on direct access, can play a vital role in the marketplace, 
bringing liquidity to the markets, reducing volatility, tightening bid-ask spreads, and 
contributing to price discovery1.  The recommendations presented here represent another 
step in improving the way direct access risk is managed.  The industry has been working 
together for several years to ensure risk management practices reflect the realities of the 
current trading environment. In 2004, FIA published a series of recommendations with 
respect to exchange error trade policies and procedures. In 2007, FIA published a “Profile 
of Exchange and FCM Risk Management Practices for Direct Access Customers,” which 
identified issues with this type of trading and enumerated the results of a survey of risk 
controls at key exchanges. The FIA/FOA Clearing Risk Study, released in February 2009, 
included recommendations for exchanges to implement pre-defined authorizations, position 
limits, and monitoring and intervention capabilities.  

The current project establishes principles the industry should consider when allowing 
direct access to exchanges. Although the guidelines contained in this document are more 
generally suited to futures and options markets, many of the principles and recommended 
implementations are applicable to other types of markets. The MAWG recognizes that 
market structures vary and exchanges need to implement risk controls across multiple product 
lines. For example, some exchanges offer both equities and futures on the same trading 
platform. The MAWG also acknowledges that exchanges are in varying stages of permitting 
direct access and therefore these recommendations may not be immediately achievable. 
Instead, these recommendations are put forth as agreed-upon principles that the global 
futures industry needs to work toward implementing. In addition, the MAWG recognizes 
that these recommendations must be considered in the context of the regulatory structures in 
which markets operate.

1 See Rise of the Machines: Algorithmic Trading in the Foreign Exchange Market by Alain Chaboud, Benjamin 
Chiquoine, Erik Hjalmarsson, Clara Vega, in which the empirical data examined by the authors suggested that, in 
the spot interdealer foreign exchange market, “the presence of algorithmic trading reduces volatility” and “computers 
do provide liquidity during periods of market stress.”   (International Finance Discussion Paper, Board of Governors 
of the Federal Reserve System, dated October 2009, p. 26.)

Introduction
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This document is designed to serve as a framework for developing risk controls. It attempts to 
strike the right balance between guiding principles and prescriptive mandates. Accordingly, 
this document reflects two types of recommendations: principles and implementation 
recommendations. The first type is a guiding principle that describes the type of control and 
what should be achieved by implementing the control. The principles, in some cases, are 
followed by implementation recommendations.  

The document includes a section on co-location and proximity hosting. Co-location and 
proximity hosting have often been included in discussions related to risks associated with 
high-frequency trading, but the MAWG does not believe this is a risk management issue. 
Co-location and proximity hosting refer to data centers that offer an alternative method to 
brokerage and trading firms seeking the fastest possible access to an exchange’s network and 
are not inherently risky. Co-location takes place when the exchange provides connectivity 
and hosting in its own data center via its own network. Proximity sites are data centers 
offered by an exchange or a third-party vendor for low-latency access to an exchange’s 
network via a third-party network connection. 

Direct access firms either join the exchanges as non-clearing members (NCMs) or access 
the exchanges in the name of their clearing member. While there is no distinction between 
a direct access firm that becomes a non-clearing member of an exchange and one that 
does not when it comes to risk and credit controls, NCMs are subject to an exchange 
membership approval and vetting process. NCMs also are subject to exchange rules such as 
market manipulation, wash trades and message limit violations. In either case, these firms’ 
transactions must be financially guaranteed by a clearing member before the exchange grants 
direct access to these firms. The clearing firm guarantees the trades pursuant to an agreement 
with the trading firm and retains administrative and risk control over orders submitted to the 
exchange trading engine.

There are three ways a non-clearing firm can access the exchange network directly:  
a.	 Direct access via a clearing firm (DA-C)—trading firm orders pass through the 

clearing member’s system prior to reaching the exchange trading engine. 
b.	 Direct access via vendor (DA-V)—trading firm routes orders through a vendor 

controlled by the clearing firm or other third-party infrastructure to the exchange 
trading engine. 

c.	 Direct access to the exchange (DA-E)—trading firm routes orders directly to the 
exchange trading engine without passing through the clearing member or a third-
party infrastructure.

Risk management of direct access market participants is not the exclusive responsibility of 
exchanges, clearing firms or even the direct access firms themselves. Rather, exchanges, clearing 
firms, and direct access firms each have a role in ensuring that appropriate risk controls are 
in place for this type of market access. Clearing firms that frequently manage many exchange 
interfaces would benefit greatly from standardization of risk management controls across 
exchanges. The more standardization of risk controls, the more efficiently and effectively 
clearing firms are able to monitor and manage the risks associated with direct access clients.

Background



5	 April 2010

Market Access Risk Management Recommendations

Trading firms typically have risk controls in place to monitor and risk-manage their trading 
systems.  These protections operate within their risk model and include pre-trade risk 
controls e.g. order size limits. Below is a sample of risk controls frequently employed by 
trading firms.  Although these controls represent good practice, they are not uniformly 
enforceable by exchanges or clearing firms.

•	 Conformance Testing. Trading firms are required to pass conformance testing with 
the party providing access when implementing a new direct access system or when 
the exchange deems it necessary because of a fundamental change in functionality 
on the exchange side.  The onus is on the trading firm to determine when it must 
recertify due to a change in logic within its system.

•	 Heartbeating with the Exchange. Trading systems can monitor “heartbeats” with the 
exchange to identify when connectivity to the exchange is lost.  If connectivity is 
lost, the system is disabled and working orders are cancelled. 

•	 Kill Button. Trading systems can have a manual “kill button” that, when activated, 
disables the system’s ability to trade and cancels all resting orders.

•	 Pre-Trade Risk Limits. Trading firms can establish and automatically enforce 
pre-trade risk limits that are appropriate for the firms’ capital base, clearing 
arrangements, trading style, experience, and risk tolerance.  These risk limits can 
include a variety of hard limits, such as position size and order size.  Depending on 
the trading strategy, these limits may be set at several levels of aggregation.  These 
risk limits can be implemented in multiple independent pre-trade components of a 
trading system.

•	 Post-Trade Risk Limits. Trading firms can also establish and automatically enforce 
post-trade risk limits that are appropriate for the firm’s capital base, clearing 
arrangements, trading style, experience, and risk tolerance.  For example, a 
trading firm can set daily loss-limits by instrument, asset class, and strategy and 
automatically close out or reduce positions if those limits are breached.  

•	 Fat-Finger Quantity Limits. Trading systems can have upper limits on the size of the 
orders they can send, configurable by product.  They can prevent any order for a 
quantity larger than the fat-finger limit from leaving the system.

•	 Repeated Automated Execution Throttle. Automated trading systems can have 
functionality in place that monitors the number of times a strategy is filled and then 
re-enters the market without human intervention.  After a configurable number of 
repeated executions the system will be disabled until a human re-enables it.  

•	 Near-Time Reconciliation. Trading systems can have functionality in place that 
accepts drop-copies from exchanges and clearing firms. Drop copies are duplicate 
copies of orders that allow a firm to compare the exchange or clearing firm view 
of trades and positions with the firm’s internal view.  This helps to assure that all 
systems are performing as expected and maintaining accurate and consistent views of 
trades and positions.

•	 Reasonability Checks. Trading systems can have “reasonability checks” on incoming 
market data as well as on generated values.

Role of
Direct Access Participant
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The management of client risk by clearing firms, and of clearing member risk by 
clearinghouses, has evolved as trading has moved from exchange floors to computer screens. 
In most respects, risk controls have strengthened.

Clearing firms direct significant resources toward managing and monitoring risk and refining 
approaches to assessing clients’ risk exposure. Clearing firms frequently employ the following 
risk management controls with direct access clients: 

•	 Most exchanges and self-regulatory organizations (SROs) require the clearing firm to 
ensure that the trading firm has pre-trade risk controls in place. Clearing firms may 
require the trading firm to provide network access to the trading firm’s pre-trade risk 
controls to allow a clearing firm to set various risk limits and, if appropriate, stop the 
trading firm’s trading. Network access is technically difficult to achieve, however, 
and trading firms can override risk controls set by clearing firms.

•	 The clearing firm will conduct substantial due diligence on prospective direct access 
clients and will grant direct access rights only to those clients who are deemed 
sufficiently creditworthy and whose internal controls are deemed sufficiently strong 
that pre-trade monitoring by the clearing firm is less essential. A clearing firm may 
also require additional collateral to provide further certainty that the trading firm 
will be able to meet any obligations that might arise from trading. In addition, the 
clearing firm will monitor the trading firm’s account to determine whether margin 
requirements are being met.

•	 Trading firms are judged on their willingness to share information with their clearing 
firm. The more transparent a client is willing to be, the more likely the clearing firm 
is to grant direct access. 

•	 Clearing firms have risk controls built into order entry systems they offer trading 
firms. These risk controls include many of the controls described later in this 
document. 

•	 Increasingly, clearing firms are depending on the exchanges to provide pre-trade risk 
controls. Often, limits on the exchange systems can be configured and monitored 
by the clearing firms.  This ensures that risk controls do not become a source of 
competition between clearing firms.

•	 Finally, clearing firms have agreements with trading firms that require the trading 
firms to have specified risk controls in place, restrict access to authorized personnel, 
and comply with relevant rules. Clearing firms monitor and enforce compliance with 
these agreements on an ongoing basis. 

Role of
Clearing Firm
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The primary business and function of exchanges is matching and clearing trades, regulating 
their market, and ensuring that the market operates safely with minimal systemic risk in order 
to sustain the overall viability of the market. The default or failure of the client of a clearing 
member has no immediate risk consequences for the clearinghouse unless it causes losses that 
lead to the default or failure of the clearing member. However, the provision of controls to 
help avoid such events must be regarded as a priority of any exchange in order to protect the 
overall integrity of its marketplace, and in recognition and support of the risk management 
role undertaken by clearing members. 

Exchanges have in place well-defined policies and procedures describing the responsibilities 
of clearing firms and direct access firms.

•	 Exchange rules may require that clearing firms implement specified risk management 
standards with regard to direct access clients.  The exchange’s requirements and 
onboarding processes for clearing firms and their direct access customers encompass 
and support the risk management standards.  The exchange processes may include: 
legal paperwork, system certifications, and permissioning security.

•	 Clearing firms for directly connected entities must follow recommended exchange 
guidelines for direct access, including in many cases requirements that clearing firms 
configure and monitor automatic risk limits and that they maintain the ability to 
halt a client’s trading system, if appropriate. 

•	 Exchanges have the ability to establish an error trade policy that provides a uniform 
set of policies and procedures that are followed in the event of an error.

•	 Exchanges have the ability to enable or restrict access per established rules.
•	 Exchanges establish rules surrounding processes to ensure that direct connections are 

guaranteed by clearing firms.
•	 Exchanges make non-clearing entities and system providers aware of exchange 

rules and responsibilities in the processes surrounding connectivity and electronic 
trading and ask them to certify to the exchange and clearing firm their capabilities 
to provide risk management functionality.

Role of
Exchange
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1. Execution Risk Tools 
Pre-trade order checks are risk controls put in place to prevent execution of a trade because of 
error or “fat-finger” problems, or a client trading beyond authorized trading limits. Pre-trade 
risk controls can be put in place at the trading firm, clearing firm, or exchange level. Pre-trade 
risk controls have become a point of negotiation between trading firms and clearing members 
because they can add latency to a trade. To avoid such negotiations, the MAWG believes 
that certain risk controls should reside at the exchange level and be required for all trading 
to ensure a level playing field. The right to set and manage, or authorize a trading firm to set 
and manage, any pre- or post-trade order checks at the exchange’s matching engine, however, 
should reside with the clearing firm. 

Recommended Implementation: 
•	 To reduce the inevitable errors that occur with manual data entry, exchanges should 

work towards providing a standard communication protocol that would allow firms 
to automate setting and updating risk parameters for individual trading entities.  
This would also give clearing firm risk managers the ability to more efficiently 
disable a client from multiple exchanges simultaneously.  An API based on an 
agreed standard protocol such as FIX would be the preferred method for entering and 
updating limits.

•	 Unless otherwise indicated, exchange risk control systems should provide clearing 
firms with the ability to define risk controls by product. All limits should be set by 
positive permissioning. The auto-default should be set to zero (i.e. clearing firm will 
set limits only for the products that they are allowing the trading firm to trade). 

a. Order Size
Quantity-per-order limits are the most basic types of pre-trade risk management tools to 
help prevent accidental “fat-finger” incidents. This type of limit sets a maximum number of 
contracts that can be bought or sold per order. 

Principle: 
Quantity-per-order limits should be mandatory: 
(a) The clearing firm should establish limits with the trading firm to avoid generating and 
sending erroneously-sized orders to the market. Occasionally, larger-sized orders are legitimate. 
In such cases, the trading firm needs to contact the clearing firm to adjust their limits.
(b) The exchange should provide default limits to protect the integrity of its market. 

Recommended Implementation: 
A clearing firm providing direct access to a market should have visibility to the limits and the 
ability to set appropriate limits for the trading firm’s activity, regardless of whether the trading 
firm accesses the market directly (DA-E), through the clearing member system (DA-C) or 
through a third-party system (DA-V).

•	 Risk controls need to be sophisticated enough to allow the clearing firm to set pre-
trade limits per product for each client and prevent trading beyond established 
limits. Different sized limits are required for more liquid versus less liquid 
instruments (e.g., front month versus back month futures or options, in-the-money 
versus out-of-the-money options).

•	 Trading firm access to products should be blocked until limits are established by the 
clearing firm. Default limits should not allow “unlimited” trading. In addition, the 
clearing firm would like to have the ability to set controls for multiple products at 
one time.

Market Access
Recommendations
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b. Intraday Position Limits
Intraday position limits give the clearing firm the ability to block a trading firm from 
increasing its positions beyond a set threshold. Limits placed at the exchange level, rather 
than the order-entry system, allow centralization and standardization of risk controls. Position 
limits, however, are intended as “speed bumps on trading” and not as actual credit controls. 
These limits include start-of-day positions, cash in account, and cross-asset margining.  
Position limits provide the ability to automatically halt errant algorithms before credit 
limits are exceeded. Once a trader is blocked, the risk department has time to perform a risk 
evaluation before allowing further trading. 

Principle: 
The exchange should make available the ability to set pre-trade intraday position limits.  
Once the trading entity has reached these limits, only risk-reducing trades would be allowed.  

Recommended Implementation for Futures:
The position limit capability should have the following characteristics:

•	 Set by trader, account, or firm and with the ability to set by groups of traders or 
accounts.

•	 Set maximum cumulative long positions and maximum cumulative short positions.
•	 Include working orders in maximum long/maximum short position calculations. 
•	 Set by product level. 
•	 Provide the ability to raise or lower limits intraday.
•	 Be configurable by open API, preferably FIX API.
•	 Be mandatory for all participants so that latency is the same for all.

Recommended Implementation for Options:
•	 Recognizing that options have a lower delta than futures, position limit capability 

must include the ability to differentiate limits by product type.

c. Cancel-On-Disconnect
When a system unintentionally disconnects from the exchange network, it creates 
uncertainty about the status of working orders. Automatic cancellation of orders upon 
disconnect provides certainty to the trading firm and risk manager whether orders have been 
filled or cancelled. Some users, however, may not want to have their orders automatically 
pulled from a market as the working order may be part of a hedged position or a cross-
exchange strategy trade. 

Principle: 
Exchanges should implement a flexible system that allows a user to determine whether their 
orders should be left in the market upon disconnection. This should only be implemented if 
the clearing firm’s risk manager has the ability to cancel working orders for the trader if the 
trading system is disconnected. The exchange should establish a policy whether the default 
setting for all market participants should be to maintain or cancel all working orders. 

d. Kill Button 
A “kill” button provides clearing firms with a fast and efficient way to halt trading activity at 
the exchange level when a trading firm breaches its obligations vis-a-vis the clearer (e.g. by 
exceeding credit limits due to erroneous activity of an automated trading application).  The 
trading firm will be excluded from trading until the clearing firm explicitly reinstates it.
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Principle:
Exchanges should provide clearing firms with the ability to:  1) delete all open orders and 
quotes and 2) reject entry of new orders and quotes. 

Recommended Implementation: 
•	 The exchange should have a registration system that requires firms to specify which 

staff members are authorized to use the kill button. 
•	 The system itself should have explicit warnings informing authorized users of the 

consequences of activating the kill button.
•	 Similar functionality could be implemented to allow a trading firm to halt trading 

activity on a firm-wide, trading group or individual trader basis.  

e. Order Cancel Capabilities
Principle: 
Exchanges should provide to clearing members an order management tool that allows real-
time access to information on working and filled electronic orders.  The tool should provide 
risk mitigation functionality in the event of an electronic trading system failure.

Recommended Implementation: 
The clearing member and trading firm should have the ability to view and cancel orders via 
this tool.  Clearing members should be able to delegate and permission the tool for individual 
traders or firms at granular levels. 

The tool should provide view capabilities for:
	 •         current order status
	 •         fill information, including partial fills
	 •         cancel and replace history
	 •         order timestamps

The tool should provide cancel capabilities for:
	 •         individual orders
	 •         groups of orders
	 •         all working orders via a single command

f. Price Banding/Dynamic Price Limits
Price banding or dynamic price limits are an automated order-entry screening process 
designed to prevent entry of buy or sell orders priced substantially through the contra side of 
the market. It reduces the number of error trades that take place in the market by preventing 
bids from being entered too far above current market prices and offers from being entered too 
far below current market prices.

Principle: 
The exchange should have the ability to set price limits on a dynamic basis, continuously 
adjusting throughout the day to account for current market conditions. 
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Recommended Implementation:
Exchanges should have the ability to widen price bands throughout the trading day when 
necessary to account for additional volatility in the market. The width of the price limits 
should be determined by product. Price banding occasionally can be too strict for less liquid 
markets and may need manual intervention to facilitate trading if the current range is 
deemed unsuitable.

Price banding for options requires a different approach because options are more dynamic. 
Price banding may be too restrictive for less liquid options contracts because of wider bid-ask 
spreads.

g. Market Maker/Sweep Protections
Sweep protections are designed for firms with specific market-marketing obligations to quote 
options en masse. Although these protections are most frequently used in options markets, 
they can be applied to other markets. Market-maker protections are parameters set by market 
makers and implemented by the exchange to provide a degree of risk protection by limiting 
the market maker’s quote execution exposure.

Principle:
Exchanges should allow a level of protection for market makers who quote simultaneously on 
both sides of the market.

Recommended Implementation: 
Protection parameters should be optional and should allow values to be set by each market 
maker or market-making entity. When market maker-defined protection values are met or 
exceeded within certain time intervals, the protections should be triggered. When triggered, 
the electronic trading system would initiate the market-maker protection functionality, 
which rejects new messages and/or cancels resting quotes associated with the market maker.

h. Internal Trade Crossing 
It is common for multiple independent trading strategies to be active at the same time within 
a single firm. The strategies may interact on the market by taking opposite sides, occasionally 
generating inadvertent wash trades. This is a common situation with direct access and the 
increasing use of broker execution algorithms that may stretch orders over a period of time, 
micro-manage slices that may interact with another order placed by the same legal entity, or 
run as an auto-hedging facility with no intention upfront to create a wash trade.

The MAWG considered whether technology could assist risk managers in identifying wash 
trades. The group concluded that it is impossible for exchanges to implement such risk 
controls because account ownership information is not available at the matching engine. 
While clearing members have the ownership information and can confirm whether a client 
resides in the same profit center of the firm, algorithms may be producing orders that interact 
with accounts within the same legal entity. Further, customers can use multiple systems 
within a legal entity that don’t necessarily interact with each other on a pre-trade basis. The 
MAWG concluded that there was no way to design a rule that would prevent wash trades 
without preventing legitimate trades.
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Principle: 
Wash trades are prohibited to prevent manipulating the market by artificially distorting 
market price or volume. Inadvertent crosses do not have the intent to mislead the public. 
Exchanges, working within the framework provided by their respective regulators, should set 
guidelines for vendors, customers, and clearing members, defining what would be acceptable 
reasons for inadvertent cross trades. Existing rules should be re-examined in the context of 
today’s trading environment.

2. Post-Trade Checks 
 In addition to pre-trade risk controls, post-trade checks allow clearing and trading firm risk 
managers to track all working/open orders and all executed and cleared orders. “Drop copy” 
functionality gives clearing firms the ability to monitor orders on a near real-time basis 
without adding latency to the order flow. Drop-copy functionality allows clearing members 
to receive duplicate copies of client working/executed orders as they enter the exchange 
network and/or are matched at the clearinghouse.

Principle: 
Exchanges should make drop copies available to clearing and trading firms. 

•	 Trade capture drop copy: Exchanges should provide clearing firms with drop copies 
of orders and executed trades. This allows clearing firms to get their current set of 
trades and positions from a secondary channel independent of the primary trading 
system.

•	 Post-clearing drop copy: Exchanges should provide clearing firms net position per 
maturity per contract as soon as the trade is matched at the clearinghouse. This 
functionality needs to be as close to real-time as possible.

•	 Exchange drop-copy functionality should allow clearing firms to enable trading firms 
to receive trade capture and post-clearing drop copies.

Recommended Implementation: 
The post-clearing drop copy feed should contain all messages including acknowledgements, 
fills, amendments and cancellations. Exchanges need to work toward an industry standard of 
delivering cleared information in a maximum of two-three minutes after a trade is executed. 
This data needs to be delivered via a standard protocol, preferably via FIX API. 

3. Co-Location Policies 
When considering co-location, exchanges should recognize that one of the main benefits of 
such a service is that it creates a level playing field for firms that want low-latency access to the 
exchange. It provides firms, both large and small, with low-latency connectivity for a reasonable 
cost made possible by the exchange sharing the costs of the required technical infrastructure 
with interested participants.  When co-location and proximity sites are not available, it 
encourages firms to seek confidential knowledge about matching engine locations and compete 
for building space closest to those engines so they can build their own private data centers. This 
exacerbates the differences in the ability of market participants to obtain market access. 

Principle:
Steps should be taken to ensure that access to co-location is available to every firm that is 
interested in such a service and that the terms of the co-location service remain transparent 
to all market participants.
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4. Conformance/Certification Testing
Principle:

•	 All trading firms that wish to write directly to the order entry or market data 
interfaces of an exchange should be required to pass an initial set of conformance 
tests for execution and market data that highlight basic functionality of the trading 
system that will be making the direct connection.  All ISVs and proprietary systems 
should be required to pass the same conformance tests, so the proprietary system 
client using the ISV should not be required to pass conformance.  

•	 The exchange should be required to provide a conformance environment on-
demand for re-certification requirements.

Recommended Implementation: 
A representative of the exchange should interview the proprietary system client to determine 
which functionality should be tested.  Exchanges should test the ability of a direct access firm to:

•	 Send a request for and process the exchange’s response for the following: Log On, 
Log Off, New Order, Cancel, Order Modify, Sequence Reset, Instrument Definition 
Requests, and Market Snapshot requests.

•	 Process the following exchange messages: Business Reject, Session Reject, Complete 
Fills, Partial Fills, Exchange Open/Close, Market Data Updates, Trade Updates. 

•	 Properly handle the exchange recovery mechanism provided when messages are sent 
from the exchange to a proprietary system participant, but the client isn’t actively 
connected.  

•	 Recertification should be required whenever core functionality has changed at the 
exchange.  It should be up to the exchange to decide what functionality needs to 
be recertified as well as to notify each proprietary system participant of the need to 
recertify.

•	 Recertification should be required whenever a participant’s core functionality has 
changed.  It is up to the proprietary system participant to notify the exchange when 
this happens as well as to schedule the conformance test.  
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5. Error Trade Policy 
The potential for trading errors by direct access traders causing significant market disruptions 
is of utmost concern to all market participants and regulators.  Although traders and trading 
system engineers have an incentive to build robust systems and safeguards to avoid potential 
error trade situations and the substantial costs associated with them, the potential for error 
trades still exists. Robust pre-trade risk controls such as price banding significantly reduce the 
potential for erroneous trades but exchanges still need to enforce a strict error trade policy.  

A robust error trade policy minimizes systemic risk by affording market participants 
confidence that when an error trade occurs, it will be evaluated and resolved according to a 
uniform set of policies and procedures. Conversely, subjectivity or ambiguity in an error trade 
policy amplifies risk through uncertainty. The objective of an error trade policy should be to 
remove the uncertainty of open-ended market exposure and allow traders to expeditiously 
resume normal trading activity. This is critical for maintaining market confidence and 
continuity.

a. Trade Certainty
An important aspect of market integrity is the confidence that, once executed, transactions 
will stand and will not be subject to arbitrary cancellation. 

Principle:
Exchanges should adopt a “Preferred Adjust-Only Policy” to ensure absolute trade certainty 
to all parties to an error trade.  In a Preferred Adjust-Only Policy all trades inside of a 
product-specific “no-adjust” range are ineligible for adjustment. All trades outside of the 
no-adjust range potentially could be adjusted to the edge of the no-adjust range from 
the prevailing market at the time of execution. The Preferred Adjust-Only Policy would 
not eliminate the authority of an exchange to cancel or correct trades under extreme 
circumstances.

b. Contingency Orders
The most challenging aspect of an error trade policy is the appropriate way to handle a 
contingency or stop order triggered by an erroneous transaction. The MAWG recognizes that 
a clearing firm could incur losses on contingency orders their customers placed which were 
filled as the result of an erroneous trade but cannot be passed on to the customer since the 
adjusted price does not indicate that the order should have been filled. 

Principle:  
In keeping with the objective of the Preferred Adjust-Only Policy, contingent or stop orders 
executed as a result of an error trade should be eligible for compensation from the party that 
made the error. An exchange’s authority to cancel orders under extreme circumstances should 
not be invoked merely because an order is a contingent order. 
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c. Notification
Markets continue to trade while the parties to a trade and the exchange determine whether 
a trade is erroneous.  The identification of a possibly erroneous trade well after it has been 
executed and its later cancellation can create even more uncertainty in the market. Market 
integrity, therefore, demands that exchange policies and procedures establish strict, narrow 
time frames in which a request to cancel a trade is made. 

Principle: 
The exchange should establish a minimal reporting time of less than five minutes for firms to 
notify the exchange that an error has occurred. 

The exchange should announce a potential adjust-or-bust situation immediately upon 
notification and the adjust decision should be disseminated to the marketplace within a 
reasonable timeframe via a specific market data message, email and/or other established mode 
of communication on a best efforts basis.
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